Rampion 2 Wind Farm Category 6: Environmental Statement
 Volume 4, Appendix 23.2: Traffic Generation Technical Note

Date: August 2023 Revision A

Document Reference: 6.4.23.2
Pursuant to: APFP Regulation 5 (2) (a) Ecodoc number: 004866580-01

Document revisions

Revision	Date	Status/reason for issue	Author	Checked by	Approved by
A	$04 / 08 / 2023$	Final for DCO	WSP	RED	RED
	Application				

Contents

1. Introduction 7
1.1 Overview 7
2. Relevant legislation, policy and other information and guidance 9
2.1 Introduction 9
2.2 National planning policy 9
2.3 Other relevant information and guidance 16
3. Existing Transport Network 19
3.1 Study Area 1 - onshore 19
Strategic Road Network 19
Local Highway Network 20
Baseline traffic flows 23
3.2 Study Area 2 - onshore impacts of offshore works 29
Strategic Road Network 29
Local Road Network 30
Baseline traffic 31
Future baseline 32
4. Proposed Development 37
4.1 The onshore elements of the Proposed Development 37
4.2 The offshore elements of the Proposed Development 38
4.3 Timings for the construction of the Proposed Development 39
5. Construction traffic generation 41
5.1 Assessment methodology 41
5.2 Onshore cable corridor and configuration 42
5.3 Work section breakdown 48
5.4 Construction activities 48
5.5 Construction Management Base 49
5.6 Scheduling 49
5.7 Construction materials, personnel, plant and equipment requirements 50
5.8 Vehicle movements 50
Introduction 50
Assumptions and Methodology 51
Assumptions 56
Sensitivity tests - methodologies 57
Outputs 58
Vehicle movements summary 58
6. Operation and maintenance traffic generation 61
6.1 Overview 61
6.2 Traffic generation 61
7. Decommissioning traffic generation 63
7.1 Onshore decommissioning 63
Onshore cable 63
Onshore substation 63
8. Glossary of terms and abbreviations 65
9. References 67
Annex A Traffic calculations 1
Annex B Figures 1
List of Tables
Table 2-1 National planning policy relevant to transport 9
Table 2-2 Local transport / planning policy relevant to transport 12
Table 3-1 A/B roads within Study Area 1 19
Table 3-2 2021 baseline traffic data (AADF) - Study Area 1 25
Table 3-3 Baseline data - 2022 Traffic survey 29
Table 3-4 A/B Roads within Study Area 2 29
Table 3-5 2021 baseline traffic data (AADF) - Study Area 2 32
Table 5-1 Accesses 43
Table 5-2 Temporary construction compounds and accesses for assessment 46
Table 5-3 Local access routes 51
Table 5-4 LGV construction staff traffic distribution 52
Table 5-6 Two-way vehicle movement summary 59
Table 7-1 Onshore substation decommissioning traffic percentage impact per highways link 64
List of Graphics
Graphic 5-1 Overall Construction Schedule 50

List of Annexes

Annex A Traffic Calculations

Annex B Figures
Figure 23.2.1 Onshore route Temporary Construction Compound (TCC) Sections and accesses from public highways

Page intentionally blank

Executive Summary

This Traffic Generation Technical Note summarises the methodology used to calculate the traffic generation of the Proposed Development. It includes a summary of the inputs relating to the construction methodology and programme, as well as around routeing of vehicles. This should be read in conjunction with Chapter 23: Transport, Volume 2 of the ES (Document Reference: 6.2.23).

Page intentionally blank

1. Introduction

1.1 Overview

1.1.1 This Traffic Generation Technical Note (TGTN) outlines the traffic data generation process for the Rampion 2 (the 'Proposed Development') covering the onshore elements of the Proposed Development including the landfall, onshore cable corridor, temporary construction compounds, the onshore substation at Oakendene and the existing National Grid substation extension at Bolney.
1.1.2 This TGTN covers the construction, operation and maintenance and decommissioning phases of the Proposed Development.

The impacts of traffic are covered separately, in the Environmental Statement (ES) Chapter 23: Transport, Volume 2 of the ES (Document Reference: 6.2.23) while measures to mitigate the impacts of construction traffic, construction workforce, operational traffic generation, abnormal loads and on public rights of way are covered respectively in the:

- Outline Operational Travel Plan (OTP) (Document Reference: 7.5);
- Outline Construction Traffic Management Plan (CTMP) (Document Reference: 7.6);
- Outline Construction Workforce Travel Plan (CWTP) (Document Reference: 7.7);
- Outline Public Rights of Way Management Plan (PRoWMP) (Document Reference: 7.8); and
- Appendix 23.1: Abnormal Indivisible Loads Assessment of the ES (Document Reference: 6.4.23.1).

Structure of this Appendix:
1.1.4 The remainder of this Appendix is structured as follows:

- Section 2: Relevant legislation, policy and other information and guidance;
- Section 3: Existing transport network;
- Section 4: Proposed Development;
- Section 5: Construction traffic generation;
- Section 6: Operation and Maintenance traffic generation;
- Section 7: Decommissioning traffic generation;
- Section 8: Glossary of terms and abbreviations; and
- Section 9: References.

Page intentionally blank

2. Relevant legislation, policy and other information and guidance

2.1 Introduction

2.1.1 This assessment has been undertaken in accordance with relevant transport related planning policy, legislation and guidance at the national, regional and local level.

2.2 National planning policy

2.2.1 Table 2-1 lists the national planning policy relevant to this TGTN.

Table 2-1 National planning policy relevant to transport
Policy description

The Overarching National Policy Statement for Energy (EN-1) (DECC, 2011)

How and where considered in this document

Paragraph 5.13.1 states "The transport of materials, goods and personnel to and from a development during all project phases can have a variety of impacts on the surrounding transport infrastructure and potentially on connecting transport networks, for example through increased congestion. Impacts may include economic, social and environmental effects. Environmental impacts may result particularly from increases in noise and emissions from road transport. Disturbance from road transport. Disturbance
caused by traffic and abnormal loads generated during the construction
phase will depend on the scale and generated during the construction
phase will depend on the scale and type of the proposal."

Paragraph 5.13.2 states "The consideration and mitigation of transport impacts is an essential part of Government's wider policy objectives for sustainable -

The transport Study Area (shown in Figure 7.6.3 of the CTMP (Document Reference: 7.6) has been established through discussions with the relevant Highway Authorities. The Outline Construction Traffic Management Plan (CTMP)
(Document Reference: 7.6), Outline Public Rights of Way Management Plan (PRoWMP) (Document Reference: 7.8), and Appendix 23.1: Abnormal Indivisible Loads assessment, Volume 4 of the ES (Document Reference: 6.4.23.1) are also submitted as part of the DCO Application. These documents deal with other impacts and measures of the Proposed Development with respect to transport.

This TGTN identifies the highway links which may be subject to possible significant transport effects. The environmental measures to mitigate these effects are set out

Policy description

development as set out in Section 2.2 of this NPS"
Paragraph 5.13.3 states "If a project is likely to have significant transport implications, the applicant's ES (see Section 4.2) should include a transport assessment, using the NATA/WebTAG methodology stipulated in Department for Transport guidance, or any successor to such methodology. Applicants should consult the Highways Agency and Highways Authorities as appropriate on the assessment and mitigation"

Paragraph 5.13.4 states "Where appropriate, the applicant should prepare a travel plan including demand management measures to mitigate transport impacts. The applicate should also provide details of proposed measures to improve access by public transport, walking and cycling, to reduce the need for parking associate with the proposal and to mitigate transport impacts."

Paragraph 5.13.5 states "If additional transport infrastructure is proposed, applicants should discuss with network providers the possibility of co-funding by Government for any third-party benefits. Guidance has been issued in England which explains the circumstances where this may be possible, although the Government cannot guarantee in advance that funding will be available for any given uncommitted scheme at any specified time"

How and where considered in this document
within the Chapter 23: Transport, Volume 2 of the ES (Document Reference: 6.2.23).

This TGTN has been prepared and submitted with the DCO Application in accordance with guidance and best practice and its scope has been discussed with the relevant Highway Authorities including National Highways.

Where appropriate, it is expected that construction worker movements by sustainable means will be facilitated and encouraged. However, it is recognised that the linear nature of the works, the absence of a fixed permanent work site along the Rampion 2 onshore temporary onshore cable corridor and the rural nature of much of the corridor may make it difficult to implement a standard construction travel plan. Many of the accesses are not adjacent to sustainable links such as bus stops and rail lines and the nature of the work means that staff traveling to site need to take equipment and work materials which necessitates the use of vans.

Additional transport infrastructure is limited to the provision of a number of mostly temporary construction accesses along the onshore cable corridor. Accesses will be removed and the land reinstated following completion. The Outline CTMP (Document Reference: 7.6) provides further details on access and is submitted as part of the DCO Application.

Proposed heavy goods vehicle (HGV) routes are identified and restrictions on HGV timing are proposed to avoid adverse effects on

How and where considered in this
document
sensitive receptors, particularly schools as set out within the Outline CTMP (Document Reference: 7.6). The design of the construction works will avoid the risk of HGV parking on the surrounding highway. The transport of AlLs has been subject to necessary assessment within the Appendix 23.1: Abnormal Indivisible Loads Assessment, Volume 4 of the ES (Document Reference: 6.4.23.1) and is expected to cause minimal disruption.

- Make sufficient provision for HGV parking, either on the site or at parking, either on the site or at
dedicated facilities elsewhere, to avoid 'overspill' parking on public roads, prolonged queuing on approach roads and uncontrolled on-street HGV parking in normal operating conditions; and
- Ensure satisfactory arrangements for reasonably foreseeable abnormal disruption, in consultation with network providers and the responsible police force"
Paragraph 5.13 .11 states "The IPC [Planning Inspectorate] may attach requirements to a consent where there is likely to be substantial HGV traffic that:
- Control numbers of HGV movements to and from the site in a specified period during its construction and possibly on the routing of such movements;

National Planning Policy Framework (NPPF) (Ministry of Housing, Communities and Local Government, 2021)

The NPPF is the primary source of national planning guidance in England.

Whilst the NPPF is not directly applicable to Nationally Significant Infrastructure Projects (NSIPs), it provides context to the TGTN as well as the Chapter 23: Transport, Volume 2 of the ES (Document Reference: 6.2.23).

The Chapter 23: Transport, Volume 2 of the ES (Document Reference: 6.2.23), sets out the results of the assessment of traffic effects including highways safety (including accident assessment).

2.2.2 Table 2-2 lists the local planning policy relevant to the assessment of the effects on transport receptors.

Table 2-2 Local transport / planning policy relevant to transport
Policy description Relevance to assessment

West Sussex Transport Plan 2022-36 (West Sussex County Council, 2022)

Policy description

Relevance to assessment

4.23-4.25 and 6.4: Walking. The policy aims to maintain the existing pedestrian provision in West Sussex, including PRoW provision, and, where possible provide new infrastructure to create new connections and routes for pedestrians particularly for leisure. More information is also included on PRoWs in the WSCC Rights of Way Management Plan 2018-2028.
4.26-4.29 and 6.4: Cycling. This policy aims to protect the existing cycling provision and promote cycling as a form of sustainable transport. It also identifies a requirement to construct and improve cycling infrastructure to connect local cycle networks in line with the LCWIPs.
4.33-4.39 and 6.12: Shared Transport Services. This policy proposes a range of measures to promote and improve public transport in West Sussex. Measures include the maintenance of public transport to a good standard and the provision of new infrastructure such as bus lanes- to improve the existing provision where this is possible.
4.64-4.66 and 6.25: Freight. This policy sets out the measures which are to be used to manage the movement of freight during the plan period. The policy identifies measures to be used, including a lorry route network around West Sussex and investment into major infrastructure improvements on the A27.

The construction of the onshore cable has the potential to temporarily affect the Public Right of Way (PRoW) infrastructure in West Sussex. The Outline PRoWMP (Document Reference: 7.8) outlines all PRoW effects and environmental measures proposed.

The construction of the onshore cable has the potential to temporarily affect local and nationally strategic cycle routes in West Sussex. A review of the local cycle routes has been undertaken within this document in Section 3 and sets out that impacts on National Cycle Network (NCN) routes will not be significant.

The construction of the onshore cable has the potential to temporarily affect local bus routes in West Sussex. A review of local bus routes is included in Section 3.

The policy and HGV route network have been considered when identifying construction HGV routes associated with the Proposed Development set out in Section 4. The HGV access strategy avoids Findon Valley, a key route restriction within the Freight Movement and Management Plan.

Policy description

Relevance to assessment
Draft Horsham District Local Plan 2019-2036 (Horsham District Local Council, 2019)

Strategic policy 41 - Infrastructure Provision. This policy states that development will only be supported if local infrastructure has adequate capacity to support the development. Suitable mitigation should be proposed where local infrastructure does not have the capacity to accommodate development.

Strategic policy 42 - Sustainable Transport. This policy sets out the conditions in which development will be supported for sustainable transport. The policy states "development will be supported if it:

Provides safe and suitable access for all vehicles, pedestrians, cyclists, horse riders, public transport and the delivery of goods. Minimises the distance people need to travel and minimises conflicts between traffic, cyclists and pedestrians.
Prioritises and provides safe and accessible walking and cycling routes and is integrated with the wider network of routes, including public rights of way and cycle paths.
Includes opportunities for sustainable transport which reduce the need for major infrastructure and cut carbon emissions. Develops innovative and adaptable approaches to public transport in the rural areas of the District. Maintains and improves the existing transport system (pedestrian, cycle, rail and road).
Is accompanied by an agreed Green Travel Plan where it is necessary to

Consideration of transport effects and requirements for environmental measures. Chapter 23: Transport, Volume 2 of the ES (Document Reference: 6.2.23) sets out the results of the assessment of the traffic effects on local and strategic highways links.

The construction of the onshore cable has the potential to temporarily affect PRoW, local bus routes and cycle routes in Horsham.

The Outline PRoWMP (Document Reference:
7.8) outlines all PRoW effects and environmental measures proposed.

A review of the local cycle routes has been undertaken within the Chapter 23: Transport, Volume 2 of the ES (Document Reference: 6.2.23) which sets out the potential effects on NCN routes.

A review of local bus routes has been undertaken within the Chapter 23: Transport, Volume 2 of the ES (Document Reference: 6.2.23) which sets out the potential effects on bus routes.

Abstract

minimise a potentially significant impact of the development of the wider area, or as a result of needing to address an existing local traffic problem."

Mid Sussex District Plan 2014-2031 (Mid Sussex District Council, 2018)

DP20: Securing Infrastructure. This policy requires development to be provided with necessary infrastructure such as efficient and sustainable transport networks.

DP21: Transport. This policy requires developments, depending on their size or impact to prepare a Transport Statement or Transport Assessment to be submitted with the planning application. The policy also requires submission of a travel plan statement or full travel plan alongside the transport statement or transport assessment which will be submitted with the planning application.

DP22: Rights of Way and other Recreational Routes. This policy aims to protect existing rights of way, cycle and recreational routes from any adverse effects that might come from development. It also states that where a route is likely to be affected an alternative must be provided which is equivalent in value to the route affected.

Additional transport infrastructure is limited to the provision of a number of mostly temporary construction accesses along the Rampion 2 onshore temporary cable corridor. Accesses will be removed where appropriate and where agreed with landowners and the land reinstated when the Rampion 2 onshore cable construction is finished. Where accesses are not removed, they will remain in-situ, for example, the access to the onshore landfall site and onshore substation. The Outline CTMP (Document Reference: 7.6) outlines further details on access.

This TGTN is provided as part of the DCO Application. The assessment presented is a link based environmental assessment and is supported by the Outline CTMP (Document Reference: 7.6), Outline PRoWMP (Document Reference: 7.8) and Appendix 23.1: Abnormal Indivisible Load assessment of the ES (Document Reference: 6.2.23.1). Outline documents were presented at PEIR stage and further discussions with relevant highways authority have been undertaken to define if there is a significant effect or not.

The protection of PRoWs, including recreational routes and National Trails has been included within the Outline PRoWMP (Document Reference: 7.8).

Worthing Local Plan 2020 - 2036 (Worthing Borough Council, 2023)

Policy description	Relevance to assessment
DM15 Sustainable Transport and	Chapter 23: Transport, Volume 2 of the ES
Active Travel. The policy sets out	(Document Reference: 6.2.23) and Outline
that Worthing Borough Council will	CTMP (Document Reference: 7.6) outlines the
support development which	proposed HGV access strategy and
encourages use of public and	environmental measures and routes that have
sustainable transport and reduces	been applied to mitigate impacts of the
the number of car journeys. Where	construction phase of the Proposed
development is likely to generate	Development.
demand for travel or have other	
implications it is required to be	
supported by a Transport Statement	
or Assessment and a sustainable	
travel plan. The policy further states	
that it will "support measures that	
promote improved accessibility,	
create safer roads, reduce the	
environmental impact of traffic	
movements, enhance the pedestrian	
environment, or facilitate highway	
improvements". In particular	
reference is made to managing the	
impact of HGV movements and	
implementing measures where this	

West Sussex Walking and Cycling 2016 - 2026 (West Sussex County Council, 2020a)

The West Sussex Walking and Cycling strategy is a document that sets out the aims and objectives for walking and cycling during the strategy period (2016-2026) and sets out guidance and information for developers.

The Outline PRoWMP (Document Reference:
7.8), outlines all PRoW impacts and
environmental measures proposed.

2.3 Other relevant information and guidance

The Strategic Road Network and the Delivery of Sustainable Development Guidance
2.3.1 The Department for Transport (DfT) (2022) Circular 02/2022 'The Strategic Road Network and the Delivery of Sustainable Development' outlines the methods in which the National Highways (NH) (formally National Highways) will engage with developers and communities to deliver sustainable development and consequently economic growth, whilst safeguarding the primary function and purpose of the Strategic Road Network (SRN).

Paragraph 55 outlines under 'Environmental assessments':
"The company will engage in the relevant screening or scoping process where a potential impact on the SRN is identified. Environmental assessments must be comprehensive enough to establish the likely impacts on air quality, light pollution and noise arising from traffic generated by a development, along with the impacts from any proposed works to the SRN and identify measures to mitigate these impacts. Requirements and advice for undertaking environmental assessments in respect of transport impacts can be found in the DMRB."

Paragraph 65 to 69 outlines access requirements relating to on-shore wind turbines:
"The promoter of a wind turbine development must identify any impacts on the operation of the SRN from the construction, operation and decommissioning stages and identify measures to mitigate these impacts. Swept path analyses must be provided for any abnormal load deliveries to the site via the SRN.

Access to the site for construction, maintenance and de-commissioning should be obtained from the local road network. A direct connection to the SRN will only be permitted in exceptional circumstances."

Within the transport Study Area (outlined in Figure 23.1.3 of the Outline Construction Traffic Management Plan (CTMP) (Document Reference: 7.6), the SRN managed by NH includes the A27 and A23. The requirements of Circular $02 / 2022$ are therefore addressed further within this TGTN.

Page intentionally blank

3. Existing Transport Network

3.1 Study Area 1 - onshore

3.1.1 This Section provides a description of the baseline conditions of the local and strategic roads which are proposed to be used for access to the onshore elements of the Proposed Development as well as the local PRoW, cycle routes and sustainable travel routes. Figure 23.5, Volume 3 of the ES (Document Reference: 6.3.23) identifies the roads that have been included in this section.

Table 3-1 sets out a high-level review of the Main "A" and "B" Roads included within Study Area 1 and more details on these are presented in the following section.

Table 3-1 A/B roads within Study Area 1
Type of road Road name

A Roads	A259, A284, A27, A24, A284, A283, A281, A272, A23
B Roads	B2139, B2135, B2116, B2118

Strategic Road Network

3.1.3 The A23 routes from the M23 south of Crawley to the A27 on the northern periphery of Brighton. For much of its length, the A23 is a dual carriageway subject to the national speed limit ${ }^{1}$. Within Study Area 1, the A23 has junctions with two major roads, the A272 and the A27 as follows:

- the junction with the A272 is located east of Bolney and comprises grade separated roundabout junctions located either side of the A23 alignment which connect to the A23 with on/off slips; and
- the junction with the A27 is located on the northern periphery of Brighton and comprises a grade separated bell junction with on/off slips which connects to a separate roundabout junction with the A23.
3.1.4 The section of the A27 that is managed by National Highways (NH) routes between Pevensey in East Sussex to Cosham, Portsmouth where the A27 becomes the M27. The A27 connects numerous coastal towns along the south

[^0]coast as well as connecting the cities of Portsmouth and Brighton. Road design standards vary along the A27, however, for most of its length the A27 is a dual carriageway subject to the national speed limit.

Local Highway Network

A24

3.1.5 The A24 routes between Worthing on the south coast and London, and routes via towns including Horsham and Leatherhead. Within Study Area 1, the A24 routes through both urban and rural settings. In rural areas the A24 is typically a dual carriageway and is subject to the national speed limit. In urban areas the A24 routes through both residential and commercial areas, and numerous residential and commercial properties front onto the road and there are a number of pedestrian crossing points.
3.1.6 Within Study Area 1, the A272 routes east/west between the A24 and the A23. The A272 intersects the A24 via a staggered crossroad and junctions with the A23 are via two grade separated roundabouts which connect to the A23 by on/off slips. The A272 is a predominantly a single carriageway rural road throughout Study Area 1. The speed limit varies between national speed limit (60 mph for cars and motorcycles) and 50 mph depending on local constraints. A section of the A272 through Cowfold is subject to a 30 mph speed limit as the road passes through a village setting. Pedestrian footways are provided and residential properties front onto the A272 throughout Cowfold.

A280 Long Furlong

3.1.7 The A280 Long Furlong provides a connection between the A24 at Findon and the A27 south of the village of Clapham. The A280 is a single carriageway road which is predominantly subject to the national speed limit through a rural setting. A small section of the A280 through Clapham Village is subject to a 40 mph speed limit and a signal controlled crossing is provided adjacent to the local primary school.
3.1.8 The A281 routes between Guildford and the A23 north of Brighton, the road connects multiple towns and villages along its routes including Horsham and Cowfold. Due to the length of the A281 and the numerous settlements that it passes through the road conditions vary throughout. The A281 within Study Area 1 includes a section from Cowfold via Shermanbury to the A281 junction with the B2116. The A281 through this section is a single carriageway road where the speed limit and other conditions vary depending on location.
3.1.9 Through Cowfold the A281 routes through the centre of the village where commercial properties front onto the road. Pedestrian footways are located on either side of the carriageway within Cowfold centre and on at least one side of the carriageway through the rest of the village. The road is subject to a 30 mph speed
limit. The A281 connects with the A272 at two mini roundabout junctions within Cowfold centre and a signal controlled pedestrian crossing is provided.
3.1.12 The A283 provides a connection between the A24 at Washington, West Sussex and the A27 at Shoreham-by-Sea. The A283 is a single carriageway which is subject to 50 mph and national speed limits at various points along its route. The A283 passes predominantly through rural areas. In Steyning, the A283 is located largely in a cutting with local roads on overbridges. The A283 joins with the A27 via a grade separated roundabout and on-off slips.

A284

3.1.13

In Lyminster Village, the road is subject to a 30 mph speed limit. Pedestrian footways exist throughout the village on at least one side of the carriageway and a small number of residential properties/driveways front onto the A284. North of Lyminster Village, the speed limit increases to 40 mph and a pedestrian footway continues on the western side of the carriageway.

The A259 routes along the south coast of England between Havant in Hampshire and Folkestone in Kent. Within Study Area 1, the A259 travels between a roundabout junction with Ford Lane at Climping to a roundabout junction with the B2187 at Toddington.
The A284 routes between Littlehampton and the A29 west of the village of Houghton. The A281 exists in two sections, from Littlehampton to a junction with the A27 at Crossbush and from a junction with the A27 in Arundel to the A29.

The section of the A284 from the A259 in Littlehampton to the A27 at Crossbush is within Study Area 1. This section of the A284 passes through the village of Lyminster and the residential suburb of Wick. In Wick, the A284 routes through a residential area where streetlighting and footways are provided and residential properties and driveways front onto the A284. The road is subject to a 30 mph speed limit.

Between Bridge Road roundabout and the junction with the A284 (Wick roundabout), the road is subject to the national speed limit and a shared cycleway/footway exists on the northern side of the carriageway between the signal controlled junction with Benjamin Grays Drive and the priority junction with New Courtwick Lane. Between Wick roundabout and the roundabout junction with the B2187 at Toddington the speed limit is reduced to 40 mph and pedestrian footways exist on both sides of the carriageway. Residential properties front onto the carriageway through this section.

B2116

3.1.19

The B2116 routes between the A281 north of Henfield to the B2118 at Aldbourne. The B2116 is a single carriageway which predominantly passes through a rural area. The speed limit varies between $30 \mathrm{mph}, 40 \mathrm{mph}$ and the national speed limit along the B2118 depending on local constraints. Throughout Aldbourne, the road is subject to a 30 mph speed limit and pedestrian footways are provided and residential properties/driveways front onto the road.

B2117

3.1.20 The B2117 is a single carriageway road which passes between the A281 and Hurstpierpoint village. Within the short section of the road included in Study Area 1, the road joins the B2118 at a priority junction and the A23 at two priority junctions which serve as southbound on and northbound off slips to the grade separated A23. The B2117 is rural in nature between these junctions and is subject to the national speed limit.

B2118
3.1.21 The B2118 routes between the B2117 at Muddleswood and the A23 north of Sayers Common. The B2118 is a single carriageway and is subject to the national speed limit for much of its route.
3.1.22 Through the village of Aldbourne, the road is subject to a 40 mph speed limit. A pedestrian footway is provided on the eastern side of the carriageway and residential properties/driveways front onto the road.
3.1.23 Through the village of Sayers Common, the B2118 is subject to a 30 mph speed limit and pedestrian footways are provided on both sides of the carriageway. Residential properties/driveways front onto the B2118 and there is a miniroundabout junction with Reeds Lane in the centre of the village.

Ford Road
3.1.24 Ford Road is a single carriageway road which routes between the A27 in Arundel and Church Lane in Climping. From a roundabout junction with the A27 to the edge of Arundel, the road passes through a residential area where a 30 mph speed limit applies and pedestrian footways are provided. South of Arundel the road is rural in nature and the national speed limit applies. Adjacent to Ford station, Ford Road crosses a railway line at a level crossing. North of the level crossing a 40 mph speed limit is applied to Ford Road which continues for its remaining route
to Church Lane in Climping. Between Ford Station and Climping a pedestrian footway exists on the western side of the carriageway.

Church Lane

3.1.25 Church Lane is a single carriageway road which routes between Ford Road in Climping to a roundabout junction with the A259 south of Climping. The road is subject to a 40 mph speed limit and a pedestrian footway is provided on the eastern side of the carriageway. A small number of residential properties front onto Church Lane in Climping.

Water Lane

3.1.26 Water Lane is single carriageway rural road which routes between the A283 and Hole Street in Winston. Water Lane is subject to the national speed limit between the junction with the A283 and the periphery of Winston Village. In Winston Village, Water Lane is subject to a 40 mph speed limit and a pedestrian footway is provided on the western side of the carriageway.

Kent Street

3.1.27 Kent Street is a single carriageway rural road which passes between the A272 and Wineham Lane and is subject to the national speed limit. There are no pedestrian footways on this rural road.

Wineham Lane

3.1.28 Wineham Lane is a single carriageway rural road which connects the village of Wineham to the A272 to the north and the B2116 to the south. Wineham Lane is subject to the national speed limit for all sections outside Wineham. Throughout Wineham, it is subject to a 40 mph speed limit and residential/rural properties and driveways front onto the road.

Baseline traffic flows

3.1.29 It has been agreed with WSCC highways officers that baseline traffic flows can be derived from existing traffic counts, most of which are taken from either permanent count locations maintained by WSCC/DfT or one-off counts within the WSCC (2020b) online traffic count database. For most locations, this has resulted in the use of data from 2019.
3.1.30 This approach resulted in one location, Ferry Road (Highways Link 1), not having any traffic data to use to determine baseline conditions. There are also four other locations - Crossbush Lane (Highways Link 10), A280 Long Furlong (Highways Link 15), A283 East of Washington (Highways Link 17) and B2188 Sayers Common (Highways Link 29) - using data that was from pre-2010.
3.1.31 It was stated at PEIR stage that, for the five location locations where no data or older data was used, the assessment would be informed by new traffic counts done for the DCO Application. New traffic counts were undertaken in mid-2022 and as such were available for use in this TGTN.

In locations where the available traffic data is older than 2022, it was agreed with WSCC that no additional traffic counts were required to be undertaken as the counts from 2017-2019 were considered to be still representative, given the low level of additional traffic forecast in comparison to existing flows on the roads as indicated by the previous counts.

In agreement with WSCC, growth rates have been derived from the DfT's TEMPro 7.2. Growth rates for HGVs have been derived from the DfT (2020) National Traffic Statistics. A base year of 2021 has been used to growth up the available data for the baseline traffic counts.

Growth rates from TEMPro have been based on two areas: Arun for the south west sections (code, E41000245) and Horsham for the remainder of Study Area 1 (code E41000248).

The TEMPro growth rates are as follows:

- 2012-2021 - Arun - 1.1387 - Horsham - 1.1468;
- 2013-2021 - Arun - 1.1232 - Horsham - 1.1292;
- 2017-2021 - Arun - 1.0607 - Horsham - 1.0608;
- 2018-2021 - Arun - 1.0454 - Horsham - 1.0454; and
- 2019-2021 - Arun - 1.0305 - Horsham - 1.0306.

HGV growth has been based on the DfT (2021) publication ‘TRA2501c - Road traffic (vehicle miles) by vehicle type in Great Britain'. Table TRA2501c presents national data of the yearly change in vehicle traffic for total vehicles, car, light commercial vehicles and HGVs.

Based on Table TRA2501c, annual growth factors for HGVs have been derived as follows:

- the changes in HGV traffic flows between 2019 (last reliable year of data due to the COVID-19 pandemic) and the base year of 2021 has been calculated;
- the growth factor from 2018 to 2019 was 0.38%;
- estimated growth between 2019 and 2021 is assumed as 0.38% per annum, or 0.76% over the two years; and
- the growth for $2019-2021$ (0.76% has been added to the growth from the historic count year to 2019 to provide for a growth from historic count year to 2021).

It should be noted the traffic count for A283 (East of A24) is dated 2005. As
TEMPro does not extend as far back as 2005, an alternative method based on the DfT statistics has been used as discussed and agreed with WSCC.

The calculations above presented the following growth rates for HGVs:

- 2005-2021-0.9755;
- 2012-2021-1.0778;
- 2013-2021-1.10180;
- 2017-2021-1.0270;
- 2018-2021-1.0160; and
- 2019-2021-1.00750.
3.1.40 For locations where total vehicle traffic data was extracted from existing counts, but where there were no HGV breakdowns in these counts, a HGV percentage was required to develop a HGV traffic flow at these locations. There were three locations where this was required;
- Highways Link 10 - Crossbush Lane;
- Highways Link 17 - A283 East of A24; and
- Highways Link 29 - B2188, Sayers Common.

At all three of these locations, the historic traffic data only present a breakdown of total vehicles. To estimate a likely HGV percentage on these highways links, reference has been made to adjacent historic traffic counts as follows:

- Highways Link 10 - Crossbush Lane - 2\% HGVs based on Highways Link 8 data;
- Highways Link 17 - A283 East of A24 - 3.4\% HGVs based on Highways Link 16 data; and
- Highways Link 29 - B2188, Sayers Common - 4.7\% HGVs based on Highways Link 32 data.

Table 3-2 sets out the average annual weekday flow (AADF) for the date of survey and the baseline (2021).

Table 3-2 2021 baseline traffic data (AADF) - Study Area 1

Highways Link	Historic Traffic Data			2021 Base		
	Total Vehicles	HGVs	Year of Data	Total Vehicles	HGVs	HGV\%
$\mathbf{1}$	1925	314	2022	1925	314	16.3%
$\mathbf{2}$	9859	1106	2019	10458	1135	10.9%
$\mathbf{3}$	6025	253	2019	6209	255	4.1%
$\mathbf{4}$	23618	1302	2019	24338	1312	5.4%
$\mathbf{5}$	22400	857	2019	23083	863	3.7%

Highways Historic Traffic Data
Link

2021 Base

	Total Vehicles	HGVs	Year of Data	Total Vehicles	HGVs	HGV\%
6	13248	551	2019	13652	555	4.1\%
7	13546	692	2018	13959	698	5.0\%
8	619	12	2019	647	12	1.9\%
9	32734	1613	2013	33732	1625	4.8\%
10	736	15	2019	827	16	2.0\%
11	31936	1757	2019	32910	1770	5.4\%
12	22776	923	2019	23473	930	4.0\%
13	30777	1012	2018	31719	1020	3.2\%
14	25731	627	2017	26899	637	2.4\%
15	16300	949	2019	17291	975	5.6\%
16	18580	3653	2022	18580	3653	19.7\%
17	21977	750	2005	22649	755	3.3\%
18	5001	170	2019	5861	166	2.8\%
19	11430	2326	2022	11430	2326	20.3\%
20	3444	105	2019	3550	106	3.0\%
21	20485	585	2019	21112	589	2.8\%
22	35481	1636	2019	36567	1648	4.5\%
23	6374	362	2018	6569	364	5.5\%
24	7739	341	2019	8090	346	4.3\%
25	6081	141	2019	6267	142	2.3\%
26	22389	991	2019	23074	998	4.3\%

Highways	
Link	Historic Traffic Data

	Total Vehicles	HGVs	Year of Data	Total Vehicles	HGVs	HGV\%
$\mathbf{2 7}$	16904	745	2019	17421	751	4.3%
$\mathbf{2 8}$	853	16	2019	879	16	1.8%
$\mathbf{2 9}$	16889	724	2019	17406	729	4.2%
$\mathbf{3 0}$	71894	4024	2012	74094	4054	5.5%
$\mathbf{3 1}$	6227	293	2019	7141	315	4.4%
$\mathbf{3 2}$	7356	1497	2022	7356	1497	20.4%
33	3147	149	2019	3243	150	4.6%
$\mathbf{3 4}$	78611	3118	2019	81016	3141	3.9%
$\mathbf{3 5}$	65068	2421	2019	67059	2439	3.6%

3.1.43 These traffic counts were undertaken in mid-2022 and as such were available for use in the PEIR SIR assessment and therefore, for completeness, this data has been included in the assessment in this TGTN. It should be noted however, that the Automatic Traffic Counts (ATCs) undertaken at Highways Link 10, Crossbush Lane was not required in this assessment. This is because this link does not receive any Proposed Development traffic as a result of the revised Maximum Design Scenario (outlined in Section 4)
3.1.44 For locations where total vehicle data was extracted from existing counts undertaken in 2022, it has been assumed that traffic levels have remained unchanged from 2021. The growth rate between 2021 and 2022 is negligible, and in 2021 traffic flows were also still being affected by COVID-19 pandemic.
Consequently the 2022 survey results for the highway links in Table 3-3 were also assumed to be a reasonable proxy for 2021 baseline in Table 3-2.
3.1.45

Table 3-3 sets out the Annual Average Traffic Flows (AATF) for the locations that were surveyed in 2022 since the original PEIR was published.

Table 3-3 Baseline data - 2022 Traffic survey

Highways Link	Light Vehicles (LVs)	Heavy Goods Vehicles (HGVs)	Total Vehicles
1 - Ferry Road	1611	314	1925
15 - A280 Long Furlong	14927	3653	18580
17 - A283 East of the A24	9104	2326	11430
29 - B2188 Sayers Common	5859	1497	7356

3.2 Study Area 2 - onshore impacts of offshore works

3.2.1 This section provides a description of the baseline conditions of the local and strategic roads which are proposed to be used for access to the onshore elements of the offshore operation and maintenance phase (access to Port of Newhaven) of the Proposed Development. Figure 23.6, Volume 3 of the ES (Document Reference: 6.3.23) identifies the roads that have been included in this section.
3.2.2 Table 3-4 sets out a high-level review of the main "A" and "B" Roads included within Study Area 2 and more details on these are presented in the following section.

Table 3-4 A/B Roads within Study Area 2

Type of Road	Road Name
A Roads	A27, A26, A259
B Roads	B2109

Strategic Road Network

A27
3.2.3 The section of the A27 that is managed by National Highways (NH) routes between Pevensey in East Sussex to Cosham, Portsmouth where the A27 becomes the M27. The A27 connects numerous coastal towns along the south coast as well as connecting the cities of Portsmouth and Brighton. Road design standards vary along the A27, however, for most of its length the A27 is a dual carriageway subject to the national speed limit. Within Study Area 2, the junction with the A26 is located at Beddingham.

Local Road Network

Beach Road / Clifton Road / Railway Road

3.2.4 Beach Road / Clifton Road / Railway Road is a two lane single carriageway urban road which connects the East Quay of Newhaven Port to the A26/B2109. The road is subject to a 30 mph speed limit. In the southern section (Beach Road) the route is industrial in nature but passes through residential areas on the Clifton Road and Railway Road section. The route has footways on both sides and is provided with streetlights.

B2109
3.2.5 The B2109 is a two-lane single carriageway that runs from the A26 south to join the A259, then parallel to the A259, and then south from the A259 west of the overpass near Newhaven Town rail station. In Study Area 2, the B2109 runs between the two junctions at either side of the A259 overpass and is provided with footways, pedestrian crossings (under signal control) and streetlights. The B2109 is subject to a 30 mph speed limit. The B2109 also has an at grade signalled rail level crossing to the west of the junction with Railway Road.

A259

3.2.6 The A259 routes along the south coast of England between Havant in Hampshire and Folkestone in Kent. Within Study Area 2, the A259 routes Newhaven Town Centre and a junction with McKinley Way.
3.2.7 In Study Area 2, the A259 is a two lane single carriageway which for the most part is a flyover between McKinley Way and Newhaven Town Centre. The A259 is subject to a 30 mph speed limit and has footways either side of road apart from the flyover section. The A259 also has streetlights and west of the flyover section has a signal-controlled crossing of the River Ouse to accommodate the swing bridge operation.
3.2.8 The A26 is a two lane single carriageway in Study Area 2 that links Newhaven to Kent and is a primary route in the south east of England.
3.2.9 In Study Area 2, the A26 links to the B2109/A259 in Newhaven and routes north to a roundabout junction with the A27 at Beddingham. The road is subject to the national speed limit (NSL) outside of settlements but reduces to 40 mph in South Heighton and 30mph in Newhaven. The A26 has footways and streetlights in the major settlements but is not provided with footways in the rural sections.

McKinley Way (Newhaven Port New Access Road)

3.2.10 McKinley Way is a 1.4 km two lane single carriageway which runs from a roundabout junction with the A259, via a new intermediate roundabout, to a new roundabout providing access to Newhaven East Quay. The road has footways as well as a segregated cycle track, and the southern end of the road includes a
bridge spanning the Newhaven to Seaford railway line and Mill Creek. McKinley Way is subject to a 30 mph speed limit.

Baseline traffic

3.2.11 The approach to the collation of baseline traffic for Study Area 2 is the same as Study Area 1 and historic traffic data has been used, derived from the DfT traffic data.
3.2.12 Growth rates for total vehicles have been derived from the DfT's TEMPro 7.2. A base year of 2021 has been used to growth up to for the baseline traffic counts. Growth rates from TEMPro have been based on TEMPro rates for Lewes 008/009 within the database which covers the town of Newhaven. The TEMPro growth rates are as follows:

- 2018-2021-Newhaven - 1.93.
3.2.13 HGV growth has been based on the DfT (2021) publication 'TRA2501c - Road traffic (vehicle miles) by vehicle type in Great Britain'. Table TRA2501c presents national data on the yearly change in vehicle traffic for total vehicles, car, light commercial vehicles and HGVs.

Based on Table TRA2501c, annual growth factors for HGVs have been derived as follows:

- the change in HGV traffic flows between 2019 (last reliable year of data due to the COVID-19 pandemic) and the base year of 2021 has been calculated;
- the growth factor for from 2018 to 2019 was 0.38%;
- estimated growth between 2019 and 2021 is assumed as 0.38% per annum, or 0.76% over the two years; and
- the growth for $2019-2021$ (0.76% has been added to the growth from the historic count year to 2019 to provide for a growth from historic count year to 2021).

The calculations above presented the following growth rates for HGVs:

- 2019-2021-1.00750

Due to the Newhaven Port New Access Road not yet having been opened to traffic at the time of 2019 data collection (growthed to 2021), an assumption has been made for the percentage transfer of existing traffic to Newhaven Port East Quay which currently routes along Railway Road / Clifton Road and would move onto the New Access Road. For completion of a robust assessment, it is assumed that 80% of the currently average daily traffic on the existing Railway Road / Clifton Road route will reassign to the New Port Access Road.
3.2.17 Table 3-5 sets out the AADF for 2019 and the current baseline (2021). 2021 base traffic includes for the transfer of 80% of the traffic from the existing access to Newhaven Port corridor; as described above.

Table 3-5 2021 baseline traffic data (AADF) - Study Area 2

Highways Link	Historic Traffic Data		2021 Base			
	Total Vehicles	HGVs	Year of Data	Total Vehicles	HGVs	HGV\%
$\mathbf{1}$	N/A	N/A	N/A	2829	233	8.2%
$\mathbf{2}$	16873	1267	2019	17346	1277	7.4%
$\mathbf{3}$	16873	1267	2019	17346	1277	7.4%
$\mathbf{4}$	36734	1921	2019	37781	1935	5.1%
$\mathbf{5}$	26348	1095	2019	27106	1103	4.1%

Future baseline

Study Area 1 - Onshore works
Traffic growth

Construction impacts

3.2.18 To understand the transport effects during the construction phase, the traffic generation calculations were interrogated to identify a single peak week across the study area for all receptors on highways links, i.e. the week during the construction programme when the number of vehicle trips being generated is forecast to be highest.
3.2.19 It has been agreed with WSCC and NH that growth rates can be derived from TEMPro and there is no requirement to include committed development or Local Plan allocations as the growth within the TEMPro estimates will account for traffic growth related to future development in the area through Local Plan allocations.
3.2.20 Furthermore, the Department for Transport (DfT) has confirmed that the A27 Arundel Bypass scheme will be deferred to Road Investment Strategy (RIS3 covering 2025 to 2030) to allow time for stakeholders' views to be fully considered. Therefore as the A27 Arundel Bypass is not yet committed, no cumulative effects assessment has been included with the Proposed Development.
3.2.21 The growth rates from TEMPro are as follows:

- 2021-2026 - Arun - 1.0746/Horsham - 1.0788; and
- 2021-2027 - Arun - 1.0831/Horsham - 1.0868 .

The HGV growth rates derived from the DfT Transport Statistics are as follows:

- 2021-2026-1.075; and
- 2021-2027-1.093.

The resultant future year traffic generation is set out in Table 5-5 later in this TGTN.

Decommissioning impacts

3.2.24 The temporal scope of the assessment of the decommissioning phase is based on the peak period of traffic during the onshore substation removal. It is currently predicted that the onshore substation will be decommissioned around 30 years from the Proposed Development commission. The onshore substation is proposed to be built in year two to five of the construction programme. Based on the assessments set out on this TGTN, year five will be 2029 and 30 years from then will be 2059.

It has been agreed with WSCC and NH that growth rates can be derived from TEMPro and there is no requirement to include committed development or Local Plan allocations as the growth within the TEMPro estimates will account for traffic growth related to future development in the area through Local Plan allocations. For the decommissioning phase impacts assessment, TEMPro rates have been extracted for Horsham.
3.2.26 TEMPro only provide traffic estimates to 2051 as this is the latest year for which a reliable traffic growth estimate can be made. It is considered reasonable that for the purpose of assessment for decommissioning in this TGTN, 2051 is used for assessment.
3.2.27 The growth rates from TEMPro are as follows:

- 2021-2051-Horsham-1.22.
3.2.28 The HGV growth rates derived from the DfT Transport Statistics based on the construction phase HGV growth methodology will result in HGV growth of 1.55\% per year which over 30 years to 2051 will result an increase in HGVs of 46.50%. Although this almost doubling of HGVs in 30 years may not be reached (in recent years HGV growth has slowed) it has been used for calculations in this TGTN for consistency with other assessments.
- 2021-2051-1.4650.

The resultant future year traffic generation is set out in Table 5-5 later in this TGTN.

Future highways network changes (construction and decommissioning phases)
3.2.30 During initial consultation, WSCC confirmed that there are no highways schemes that will need to be considered in the assessment.
3.2.31 WSCC commented that the Arundel Bypass is being promoted by NH but is not a committed development. With no direct impacts of onshore elements of the Proposed Development across the proposed route of the A27 Arundel Bypass, the only effects of the onshore elements of the Proposed Development on the bypass
will be the additional traffic generated during the construction phase. Highways Link 9 (As shown in Figure 23.20, Volume 3 of the ES (Document Reference: 6.3.23) has been selected to provide NH with an indication of the peak construction traffic on the A27 which will switch to an open A27 Arundel Bypass. The Department for Transport has confirmed that the A27 Arundel Bypass scheme will be deferred to Road Investment Strategy (RIS3 (covering 2025 to 2030) to allow time for stakeholders' views to be fully considered. Therefore, as the A27 Arundel Bypass is not yet committed, it is not included within the cumulative effects assessment in the ES or TGTN, since it is not considered that the A27 Arundel Bypass would either be open or past its peak point of construction by the time that construction of the Proposed Development is complete.
3.2.32 The Lyminster Bypass construction works commenced on 24 October 2022 and the scheme completion is currently forecast for Autumn 2024. The bypass will link to the existing A284 from a point approximately 600 m south of the A27 at Crossbush and join the privately developed section of the same proposed bypass at Toddington Nurseries. The proposed bypass will be a 7.3 m wide single dual carriageway with verge on one side and a shared footway/cycleway facility on the other. The footway/cycleway will connect to existing and proposed facilities along the southern half of the bypass and A259. The Lyminster Bypass is due to be completed ahead of the peak of any Rampion 2 construction works. In order to present a robust scenario, the Rampion 2 traffic modelling has assumed that no Rampion 2 construction traffic would use the Lyminster Bypass and would instead use the existing road network; in practice, the presence of the Lyminster Bypass would relieve pressure on the existing road network. The cumulative highways assessment therefore does not include the Lyminster Bypass, so as to provide a robust assessment.
3.2.33 West Sussex County Council (WSCC) is currently developing a major road enhancement scheme for the corridor of the A259 between Bognor Regis and Littlehampton in Arun District. The location of the scheme is between and including the B2132 Yapton Road (Comet Corner) junction and the B2187 Bridge Road (Tesco) junction. Construction commencement, subject to Full Business Case approval, is predicted to be the middle of 2025. As the scheme does not yet have a full Business Case it has not been included in the cumulative effects assessment in the ES or TGTN, however a sensitivity test could be undertaken if the A259 scheme were to get full business case approval.

Study Area 2 - Onshore impacts of offshore works

Traffic growth

3.2.34 Onshore impacts of the offshore operation and maintenance phase are proposed to start in the first year of commission. With the construction phase ending in 2029, a future year of assessment of 2030 for this operation and maintenance phase has been assumed for assessment in this TGTN.

It has been agreed with WSCC and NH that growth rates can be derived from TEMPro and there is no requirement to include committed development or Local Plan allocations as the growth within the TEMPro estimates will account for traffic growth related to future development in the area and it is proposed to continue that
approach for Study Area 2. The growth rates are based on the Newhaven (TEMPro data set Lewes 008/009) location in TEMPro as that is where the candidate port is located.
3.2 .36

The growth rates from TEMPro are as follows:

- 2021-2030-1.0746.

The HGV growth rates derived from the DfT Transport Statistics are as follows:

- 2021-2030-1.1395.

The resultant future year traffic generation is set out in Table 5-5 later in this TGTN.

Page intentionally blank

4. Proposed Development

4.1 The onshore elements of the Proposed Development

4.1.1 The onshore elements of the Proposed Development will include the construction of a temporary onshore cable corridor from landfall at Climping to a new onshore substation at Oakendene and from the new onshore substation to the existing National Grid Bolney substation. The onshore cable will be buried along its entire length and will encompass a permanent easement width of up to 25 m . For construction purposes, a nominal working width up to 40 m will be required for the majority of the onshore cable corridor, with some larger working areas required at key areas, while constraints may restrict the working in other areas.
4.1.2 The onshore temporary cable corridor will cover an approximate distance of 39 km measured from the Mean High Water Springs (MHWS) and will start at the proposed landfall site in Climping, cross under the A289 and River Arun before crossing under the A27 near Hammerpot. From here, the onshore temporary cable corridor heads north east across the South Downs to Washington, West Sussex and under the A24. The onshore cable corridor continues north east through a rural area and to the new onshore substation location within proximity of the existing National Grid Bolney substation.
4.1.3 The onshore temporary cable corridor has numerous crossings of roads including the A289, A27, A24, A283, B2135, B2116 and A281. There is also one crossing of the River Arun and two crossings of the National Rail network west of Littlehampton and west of Wick. The onshore cable will be installed in trenches or by HDD to avoid major roads, operating railway lines and watercourses.

For the purpose of this assessment the entire onshore temporary cable corridor has been split into three sections which are described below and presented in Figure 23.2, Volume 3 of the ES (Document Reference: 6.3.23).

- Section 1 runs north from landfall, across the A259, the River Arun and the two railway lines before crossing the A27 near the edge of the South Downs at Hammerpot. This section is rural but runs along the edge of the settlements of Littlehampton, Wick, Lyminster and Poling;
- Section 2 runs north east from the Section 1 boundary to a crossing of the A24 near Washington, West Sussex. Between the A27 and A24, the onshore cable corridor has minimal interaction with the local highways network and due to the nature of access options, will make use of a continuous haul road; and
- Section 3 runs from the Section 2 boundary along the A283 corridor before turning north east to Partridge Green and further east to Wineham / Bolney. This section is flat and rural in character but with more crossings of roads.
4.1.5 Temporary construction compounds (TCCs) will be required to store materials and plant as well as form a base for traffic working at the various site locations. The onshore part of the proposed DCO Order Limits allows space for four temporary construction compound locations as set out in Figure 23.3a-c, Volume 3 of the

ES (Document Reference: 6.3.23). The temporary construction compounds used in the traffic calculations used in this assessment are as follows:

- Temporary construction compound 1 -Climping compound: Site Access A-5, serving Section 1;
- Temporary construction compound 2 - Washington compound: Site Access A39, serving Section 2 ;
- Temporary construction compound 3 - Oakendene west compound: Site Access A-62, serving Section 3;
- Temporary construction compound 4 - Oakendene substation compound: Site Access A-63, serving Section 3; and
- Temporary construction compound 5 - existing National Grid Bolney substation compound - Site Access A-68, serving Section 3.
4.1.6 Figure 23.4a-c, Volume 3 of the ES (Document Reference: 6.3.23) sets out the onshore temporary cable corridor sections and the selected temporary construction compounds.
4.1.7 The operational lifetime of the Proposed Development is expected to be around 30 years and for the purposes of this TGTN at year 30 the Proposed Development will reach the decommissioning phase.
4.1.8 Taking place after construction and commissioning of the Proposed Development, the operation and maintenance phase activities can be divided into three main categories:
- scheduled maintenance;
- unscheduled maintenance; and
- special maintenance in the event of major equipment breakdown and repairs.

4.2 The offshore elements of the Proposed Development

4.2.1 The key offshore elements of the Proposed Development will be as follows:

- up to 90 offshore wind turbine generators (WTGs) and associated foundations;
- blade tip of the WTGs will be up to 325 m above Lowest Astronomical Tide (LAT) and will have a 22 m minimum air gap above Mean High Water Springs (MHWS);
- inter-array cables connecting the WTGs to up to three offshore substations;
- up to two offshore interconnector export cables between the offshore substations;
- up to four offshore export cables each in its own trench, will be buried under the seabed within the final cable corridor; and
- the export cable circuits will be High Voltage Alternating Current (HVAC), with a voltage of up to 275 kV .

During the construction phase, it is anticipated that 2,000+ two way movements for crew support vessels are required, however the arrangements for these movements have not yet been finalised. The construction of the Rampion 1 project resulted in staff arriving and departing numerous ports in the UK and Europe and it is likely this process will be undertaken for Rampion 2. Consequently, the onshore impacts of the offshore process (i.e. transferring construction workers to ports to connect to offshore transfers) would have a limited impact onshore compared to the movement of freight. Offshore construction worker movements have been considered as part of the onshore assessment.
4.2.3 Material, including large transformers, cable and WTG components are expected to be delivered directly from European manufacturing bases. WTG construction vessels are also usually moored in European ports or will transfer from other projects.
4.2.4 There will also be some onshore works required in the offshore works but these construction activities (construction compound setup, HDD, Transition Joint Bay (TJB) construction etc.) have relatively short durations compared with the overall landfall construction presented in this TGTN for the construction phase of the landfall site (onshore). Due to the landfall works requiring offshore works, the scheduling of the landfall works will allow for flexibility around the offshore schedule and sufficient time for all onshore activities to be performed so as not to delay the offshore works.
4.2.5 The operational lifetime of the Proposed Development is expected to be around 30 years and for the purposes of this TGTN at year 30 the Proposed Development will reach the decommissioning phase. It is only anticipated that elements of the Proposed Development that are above sea level will be removed (WTG / substations).
4.2.6 When the offshore elements of the Proposed Development are constructed and commissioned staff will be required to continue to operate and maintain the WTGs and associated infrastructure. RED will draw on experience gained in operating and maintaining the existing Rampion 1 project and although the maintenance port and facilities are not yet confirmed, for the purpose of this TGTN it is assumed that the existing operation and maintenance base Newhaven East Quay will be used for staffing.

4.3 Timings for the construction of the Proposed Development

4.3.1 Indicative hours for the construction work and any construction-related traffic movements to or from any site of the Proposed Development are as follows:

- 07:00 to 19:00 hours Monday to Friday; and
- 08:00 to 13:00 hours on Saturday;
- no activity outside these hours including Sundays, public holidays or bank holidays will take place apart from under the following circumstances:
- where continuous periods (up to 24 hours, 7 days per week) of construction work are required for HDD²;
- for other works requiring extended working hours such as concrete pouring which will require the relevant planning authority to be notified at least 72 hours in advance;
- for the delivery of abnormal loads to the connection works, which may cause congestion on the local road network, and will require the relevant highway authority to be notified at least 72 hours in advance; or
- as otherwise agreed in writing with the relevant planning authority.

For the purposes of a robust assessment in this TGTN, traffic generation has only been calculated for a five day working week and with no Saturday working.

[^1]
5. Construction traffic generation

5.1 Assessment methodology

5.1.1 This section presents a high-level overview of the method that has been adopted to estimate the vehicle movements of both heavy goods vehicles (HGVs) and light vehicles (LVs) throughout the construction phase of the onshore elements of the Proposed Development. LVs can be further broken down into light goods vehicles (LGVs) or other LVs such as cars, for example those driven by construction workers.
5.1.2 In this TGTN, a vehicle movement has been defined as a one-way journey between two locations. For example, an HGV delivering cables to a TCC and then leaving empty is considered two journeys. A subsequent further two journeys are then required to deliver the cables from the TCC to site (one loaded, one empty).

In addition to this, the construction traffic calculations account for movements from the TCCs to the specific work site. The two way movement to deliver the cable to the TCC is also followed by another, more local, two way movement which would then deliver the cables from TCC to where they are required at a construction site and then return to the TCC.
5.1.4 The estimates within this TGTN have been calculated against a conservative set of assumptions based on the best available information on the onshore works within the proposed DCO Order Limits. The final arrangement of the construction works, and precise methods used will be determined during the detailed design stage and the construction phase of the works depending on the working arrangements favoured by the appointed contractor(s). These factors will influence the number of vehicle movements and the personnel requirements.
5.1.5 For this assessment, each of the construction work sites has been treated separately. Each construction work site along the onshore temporary construction corridor has been broken down into the different activities required. Each activity has then been assessed individually for its requirements. The following key design assumptions have been determined for each activity:

- duration of activity;
- material and plant required at each work site;
- length of haul road required;
- approximate size of construction workforce; and
- quantity of construction personnel and construction LGVs.

Construction traffic vehicle movements associated with the materials required at the onshore cable and onshore substation have been determined based on the latest bill of quantities.

5.2 Onshore cable corridor and configuration

Overview

5.2.1 The construction works have been based on the following onshore cable connection design. A maximum of 20 buried cables will run along the length of the onshore cable route from the landfall at Climping through to the new onshore substation at Oakendene. A maximum of 10 buried cables will subsequently run from the new onshore substation to connect into the existing National Grid Bolney substation.

The up to 275 kV cable system along the onshore cable route will comprise four cable circuits in separate trenches. Each circuit will contain three Power Cables (HVACs) and two Fibre Optic Cables (FOCs) drawn through pre-installed ducts.
5.2.3 The 400 kV cable system between the new onshore substation at Oakendene and the existing National Grid Bolney substation will comprise two cable circuits in separate trenches. Each circuit will contain three Power Cables and two FOCs drawn through pre-installed ducts. In order to undertake calculations of vehicle movements associated with the construction phase of the onshore elements of the Proposed Development, a fixed scheme is required with regards to onshore cable corridor, onshore substation location and TCC locations. To inform these calculations, vehicle movements have been calculated for each construction site and these are discussed in the following subsections for:

- onshore cable corridor;
- temporary construction compounds;
- onshore substation; and
- temporary construction accesses.

Onshore cable corridor
5.2.4 The onshore cable corridor is routed from the landfall at Climping through to a proposed new onshore substation at Oakendene, and then onto the existing National Grid Bolney substation.

Temporary access points along the onshore cable route have been identified. These accesses may be utilised in different ways, due to safety and efficiency, for example traffic may enter and exit via different accesses whilst making deliveries to site. For the purposes of this assessment, access to and from the onshore cable route is assumed through the access points as set out in Table 5-1.

Table 5-1 Accesses

Access	Access Type
A-01	Construction and Operational
A-02	Light Construction
A-03	Operational Construction
A-04	Construction and Operational
A-05	Operational
A-06	Light Construction
A-08	Construction and operational
A-09	Operational
A-10	Operational
A-11	Construction
A-12	Construction and operational
A-13	Light Construction and Operational
A-14	Construction and Operational
A-15	Construction and Operational
A-16	Operational
A-17	Operational
A-18	Cight construction and Operational
A-20	Operational
A-21	Light construction
A-25	Construction

Access	Access Type
A-28	Construction
A-29	Operational
A-30	Operational
A-31	Operational
A-32	Operational
A-33	Construction
A-34	Operational
A-35	Construction
A-36	Operational
A-37	Light Construction
A-38	Construction and Operational
A-39	Construction and Operational
A-40	Construction and Operational
A-41	Construction
A-42	Construction \& operational
A-43	Cond Operational
A-43a	Construction and Operational
A-42b	Construction
A-44	Operational
A-45	Construction and Operational
A-48	Construction and Operational

Access	Access Type
A-50b	Operational
A-51	Operational
A-52	Construction and Operational
A-53	Construction
A-54	Operational
A-55	Operational
A-56	Construction and Operational
A-57	Operational
A-58	Operational
A-59	Operational
A-60	Construction and Operational
A-61	Construction
A-62	Construction and Operational
A-63	Construction and Operational
A-64	Operational
A-65	Light Construction and Operational
A-66	Construction and Operational
A-67	Construction
A-68	

Temporary construction compounds

5.2.6 During the construction phase, four temporary construction compounds will be required spread out along the onshore cable corridor. The following temporary construction compound (TCC) locations have been considered:

Table 5-2 Temporary construction compounds and accesses for assessment

Temporary construction Compound	TCC-1	TCC-2	TCC-3	TCC-4 (Oakendene Substation)	TCC-5 (Bolney Substation)
Access	A-5	A-39	A-62	A-63	A-68

Onshore substation
5.2.7 The purpose of the new onshore substation at Oakendene is to increase the onshore cable route voltage from 275 kV to the 400 kV required to connect to the existing National Grid Bolney substation.
5.2.8 Access to the onshore substation will be required during construction as well as operation and maintenance. The temporary construction access route will be used for the duration of the onshore substation construction works.
5.2.9 Temporary construction activities for the onshore substation will include enabling works and construction works. Enabling works will prepare the site ahead of construction and include vegetation clearance, access road construction, installation of drainage systems, stone fill, installation of a temporary construction compound, delivery of materials, plant, machinery and fuel, and any earthworks necessary for the installation of the substation foundations.
5.2.10 Generally, onshore substation construction will take place during daylight hours with a requirement only for local task lighting. Construction works will involve:

- landscaping;
- installation of perimeter fencing;
- ground preparation works;
- installation of underground services and onshore substation foundations;
- construction of the control and switchgear buildings and plant buildings;
- construction of cable trenches;
- construction of ducts and pits;
- construction of the oil containment bund; and
- provision of utility supplies.
5.2.11 Once all construction activities have been carried out, the electrical equipment will be installed, commissioned and tested for the performance of the connection between Oakendene and the existing National Grid Bolney substation. Finally, the site will be secured, and the temporary area returned to its original use and condition.
5.2.12 It is anticipated that heavy goods vehicles (HGVs) will be required during the enabling and construction phases of the development.

It is anticipated that Abnormal indivisible load (AIL) movements are expected to be required during the construction phase to transport permanent plant and equipment to the site. The expected AIL movements are described in Appendix 23.1: Abnormal Indivisible Loads assessment, Volume 4 of the ES (Document Reference: 6.4.23.1).

Abnormal Indivisible Loads (AILs) will be comprised of:

- Three transformers; and six shunt reactors. Temporary construction and operational accesses

Temporary construction access points are required along the onshore cable corridor to allow the transportation of materials, equipment, and personnel to and from the construction sites. These temporary construction access points will allow access to the construction corridor where there will be a temporary construction haul road running along the length of the onshore cable route, except for locations where there are trenchless or road crossings. Figure 23.14a-e, Volume 3 of the ES (Document Reference: 6.3.23) presents the locations of all the proposed temporary construction access points along the onshore cable corridor.

Potential temporary construction access points along the onshore cable corridor were identified based on suitability for the Proposed Development requirements. Existing access points and tracks have been utilised where possible. These temporary construction and operational accesses may be utilised in different ways due to safety and efficiency, for example construction traffic may use one access for incoming traffic to an onshore cable corridor section and another access for traffic to exit. For the purposes of this assessment, access to and from the onshore cable corridor is assumed through the same access point.

- P1 - AA-05 - Temporary construction (and permanent) access to A284 Lyminster Road;
- P2 - AA-16 and AA-17 - Temporary construction accesses to A24 Westbound (AA-16 temporary construction access only and AA-17 permanent only);
- P3 - AA-18 - Temporary construction and permanent access (Decoy Lane) to A24 Westbound;
- P4 - within LACR-01a - Temporary construction access (Hammerpot) to unnamed road which links to A24 Eastbound;
- P5 - AA-21 - Temporary construction and permanent access to Michelgrove Lane;
- P6 - AA-22 and AA-23 - Temporary construction and permanent accesses to Michelgrove Lane;
- P7 - AA-24 - Temporary construction and permanent access to Longfurlong Lane; and
- P8 - AA-25 - Temporary construction and permanent access from A280.

5.3 Work section breakdown

5.3.1 The three sections of the onshore cable corridor route associated with each of the three temporary construction compounds assessed is presented in Figure 23.2.1, Annex B.

The onshore cable corridor has been divided into sections to define the number of workfronts required. The key onshore cable construction activities occur over a three year period. It is assumed that the construction crews will initially work on the southernmost section (Section 1) of the onshore cable corridor, moving on to Section 2 and then Section 3 as set out in Figure 23.2.1, Annex B. The sections are in turn broken down into smaller sections defined by access points and crossings.

Each of these sections is defined by the presence of a temporary construction compound (TCC), plus a number of construction accesses.

5.4 Construction activities

5.4.1 During the construction phase, construction activities have been divided into the following activities:

- horizontal directional drill (HDD) construction compound works;
- HDD drilling;
- temporary construction compound mobilisation;
- temporary compound construction;
- haul roads;
- landfall works;
- clearing works;
- temporary construction access works
- materials deliveries;
- trenching;
- all joint bay works;
- duct installation, cable pulling and reinstatement;
- temporary construction access road / haul road reinstatement;
- compound reinstatement; and
- onshore substation construction.

Construction traffic generation of all of these elements has been predicted across the proposed four year construction schedule. This has resulted in vehicle movement predictions per vehicle type on a weekly basis per access point, split into HGV and light vehicles, with the latter being further split into staff vehicles and construction Light Goods Vehicles (LGVs) such as vans and pick-up trucks.

5.5 Construction Management Base

5.5.1 A construction management base (CMB) is proposed to be located in the vicinity of Shoreham Port.
5.5.2 A management team, marine co-ordination and vessel management team will be based in the office, and some contractors may use the office facility as well. These teams will comprise around 24 people in total and will be assumed to be shorebased for robustness.
5.5.3 The construction management base will enable Crew Transfer Vessels (CTV) to access the offshore construction location. The construction management base will also enable CTV crew transfers to complete construction and commissioning work.

The base will feature facilities including:

- Temporary modular offices, with welfare and changing facilities;
- Car parking; and
- Temporary pontoons with a fuelling facility
5.5.5 It has been assumed that 40 workers per day will travel to the CMB for onward transfer by CTV, and they have the same spatial distribution as workers based at TCC1. The remainder of the LV traffic is assumed to be LGVs and similarly follows the spatial distribution for TCC1 deliveries. There are also some HGVs serving the base, and it is assumed that the HGV distribution is followed with respect to these.

5.6 Scheduling

5.6.1 An indicative construction programme for the Proposed Development is presented in Graphic 5-1. The programme illustrates the anticipated duration of the major construction / installation elements. The anticipated maximum total construction duration is approximately four years.

Each construction activity has been scheduled to overlap activities where necessary across the construction schedule This has involved both paralleling some construction activities where practical and increasing the overall duration for other construction activities, as shown in Graphic 5-1.

Graphic 5-1 Overall Construction Schedule

5.7 Construction materials, personnel, plant and equipment requirements

5.7.1 Construction personnel and plant / equipment requirements have been assessed at a high level for the purposes of estimating the number of HGVs required, as well as LGVs required to bring workers to onshore part of the proposed DCO Order Limits. Typically, this is via multi-occupancy vehicles to temporary construction compounds, before travelling to specific construction accesses that are part of the onshore part of the proposed DCO Order Limits via five person welfare vans.
5.7.2 As the volume of required construction plant/equipment is anticipated to be relatively low in comparison to other construction activities (e.g. aggregate transportation) associated with the construction of the onshore cable corridor, a high-level estimate has been made only where significant construction plant / equipment requirements are expected.

5.8 Vehicle movements

Introduction

5.8.1 This section describes the approach used to estimate the vehicle movements, both light vehicles (LVs) - including light goods vehicles (LGVs) - and heavy goods vehicles (HGVs).
5.8.2 Construction traffic movements to and from each access have been provided by the project engineering team. These have then been combined with a series of assumptions around routes, occupancy and other relevant factors.

Assumptions and Methodology

LGVs

5.8.3 The local access routes from compound to access (indicated in Figure 7.6.9a-c of the Outline CTMP (Document Reference:7.6) and Table 5-3) have been used to determine the impact of LGV and HGV traffic on Receptors.
5.8.4 To assess the impact at each receptor, the traffic data has been obtained from the accesses which pass the Receptor. For example, if the route between compound 1 to access A-5 passes accesses A-1, A-2, A-3 and A-4, and the Receptor is after access $A-3$, then the traffic data has been summed from accesses 4 and 5. This provides a robust assessment which avoids double counting of traffic at each receptor. This has then been repeated for each compound.

Table 5-3 Local access routes

Local access route number	Route via local road network	Temporary construction and operational accesses served
Route 1	A27-A284-A259 - Ferry Road or Church Lane	$\begin{aligned} & A-01, A-05, A-09, A-13, A-15, A-16, \\ & A-20, A 21 . \end{aligned}$
Route 2	$\begin{aligned} & \text { A27 - A280 - A24 - A283- } \\ & \text { B2135 - B2116 } \end{aligned}$	$\begin{aligned} & A-26, A-27, A-28, A-39, A-40, A-41, \\ & \text { A-42, A-43, A-47, A-48, A-50, A-53, } \\ & \text { A-54. } \end{aligned}$
Route 3	A23-A272 - Wineham Lane or A272 - Kent Street or A272 A281	$\begin{aligned} & A-51, A-52, A-56, A-57, A-61, A-63, \\ & A-64, A-67, A-68, A-69 . \end{aligned}$

5.8.5 The LGV Access Strategy is based on a prediction of the construction traffic generation of all onshore elements of the Proposed Development. The construction traffic generation has been applied to the four year construction schedule, which has resulted in construction vehicle movement predictions per vehicle type on a weekly basis per access point, split into HGV and LGVs, the latter further split into construction staff vehicles and construction LGVs.
5.8.6 To understand the routing of LGV construction traffic generated by the onshore elements of the Proposed Development, calculations derived a LGV construction traffic distribution for both types of LGVs. The calculations comprised of the following:

- LGV staff traffic - This comprises both staff driving to work at the TCCs (from which they may be transferred to other sites by multi-occupancy vehicle - see next bullet point) as well as occasional deliveries by LGV. In both cases the spatial distribution has been calculated from journey to work data from the 2011 census for three local areas associated with the three sections of the onshore elements of the Proposed Development (outlined in Section 1.1). Figure 7.6.9a-c of the Outline CTMP (Document Reference: 7.6) sets out the locations of the three sections used to inform construction staff distribution.

This resulted in a distribution of construction staff LGVs between entry / exit points and each construction section, summing to 100% in each case; and

- LGV construction delivery traffic by multi-occupancy vehicle - Understanding the most appropriate routes of LGV construction traffic between the temporary construction compounds and proposed works site temporary construction accesses along the onshore cable corridor set out in Table 5-1. This was undertaken using journey planning software and considering any local constraints.

Table 5-4 LGV construction staff traffic distribution

Entry / Exit points from highways network scope	Construction staff traffic distribution by temporary construction compound / onshore substation		
	Section 1	Section 2	Section 3
A259 East	21\%	3\%	2\%
A284 South	33\%	2\%	1\%
A259 West	16\%	3\%	0\%
A23 North	1\%	2\%	17\%
A23 South	3\%	3\%	6\%
A24 North	3\%	15\%	21\%
A3021 south	4\%	17\%	9\%
A27 East	1\%	2\%	3\%
A27 West	9\%	2\%	0\%
A284 North	4\%	1\%	0\%
A283 East	0\%	12\%	8\%
A283 North	0\%	0\%	0\%
A283 West	0\%	29\%	13\%
A272 East	1\%	1\%	9\%
A272 West	0\%	2\%	3\%
A270	3\%	6\%	6\%
A273	0\%	0\%	0\%
A2300	0\%	0\%	3\%

Entry / Exit points
from highways
network scope

Construction staff traffic distribution by temporary construction compound / onshore substation

Section 1

Section 2
Section 3
100\%
100\%
100\%

HGVs

The HGV access strategy similarly has considered all local constraints, together with policies such as those set out in the West Sussex Transport Plan 2022-2036 (WSCC, 2022), to identify three local HGV access routes which are set out in
Figure 7.6.9a-c of the Outline CTMP (Document Reference: 7.6) and Table 5-3.
5.8.8 HGVs would seek to adhere to these routes wherever possible, with certain exceptions, for example, when materials are required to be delivered to accesses along a different route. Additionally, there may need to be temporary deviations from the HGV routes in the event of an incident on the original route, leading police to redirect HGVs via an alternative route until the incident has been cleared.

Weekly Trips

5.8.9 Based on the methodologies described above for LGVs (staff and construction) and HGVs, Table 5-5 presents the LGV and HGV movements (two-way total) between each compound and each access combination, via each local route. These are totals for the peak week in each case, from which a daily number of trips was then derived by dividing by the assumed number of working days per week.
5.8.10 The peak week has been obtained by calculating the total number of vehicle trips for all accesses in each week (regardless of whether the trips are LGV or HGV). The peak week has been used to assess each individual receptor which may be impacted by construction traffic associated with that access, thereby offering both a consistent approach (since all traffic flows are from the same week) as well as a robust approach (since it is the peak week as calculated across the entire study area).

Table 5-5 Traffic Distribution

From	Route	To (Access)	LGV movements (2-way total) (peak week)	HGV movements (2-way total) (peak week)
Section 1 - Climping Compound (Access A-05)	Church Lane (S) - A259 -	A-01	378	522

From	Route	To (Access)	LGV movements (2-way total) (peak week)	HGV movements (2-way total) (peak week)
	Spithandle Lane			
Section 3 - Oakendene Industrial Estate	A272 (E) - Cont Street (S) (Access A-62)	A272 (E) -	A-60	0
Wineham Lane	A-61	252	0	
	(S)	A-67	252	486
	A272 (W) -	A-68	0	683

From	Route	To (Access)	LGV movements (2-way total) (peak week)	HGV movements (2-way total) (peak week)
	A272 (W) -	A-53	0	0
	A281 (S) -			

Assumptions

The following assumptions have been made to provide a high-level estimate of construction traffic generation:

- for robustness, weekday traffic numbers have been calculated on the basis of dividing the weekly traffic by five working days per week;
- number of person-days - all workers are assumed to travel to the onshore part of the proposed DCO Order Limits once per day via personal LVs (i.e. cars) with one worker per vehicle (i.e. no car sharing). This is a robust assumption for the purposes of the traffic assessment as, in practice, once the workforce becomes established, some degree of car sharing may take place;
- plant and equipment required to complete each construction activity will be stored on the various construction sites (along the onshore cable corridor) that form part of the onshore part of the proposed DCO Order Limits, as opposed to within temporary construction compounds. As a result, plant and equipment is associated with only two movements (access and egress) per temporary construction access point;
- all materials are brought directly to the construction sites that are part of the onshore part of the proposed DCO Order Limits, with exception of cement bound sand (CBS), cables and ducts, which will first be stored within TCCs; and
- LGV quantities assume up to five individuals per welfare van, and one individual per car arriving at TCCs. Additional LGV trips are accounted for Supervisors travelling between construction sites and TCC offices;
- The LGV movements generated by each construction activity have been linked back to the trip generation spreadsheet and used to determine which of the LGV trips are staff trips as opposed to LGV construction trips;
- 2011 Census Journey to Work Data was used to estimate home (or temporary home) locations of the construction workforce, which was then sense checked. The results reflect a workforce which will both aim to encourage local employment as well as uptake of local accommodation by some workers sourced from further afield; and
- For robustness, for the purpose of the traffic analysis, all workers were assumed to travel by car and without car sharing taking place; in practice, there will be measures to encourage sustainable travel amongst the workforce, as set out in
the Outline CWTP (Document Reference: 7.7) and Outline OTP (Document Reference: 7.5).

Sensitivity tests - methodologies

5.8.12 The principal method used to select the dataset for the period of peak construction trip generation has been that described in paragraph 5.8 .10 (i.e. identifying the week with the greatest number of development trips generated across the Study Area). As described above, this approach is both robust - since the peak week is selected - and consistent, since traffic for the same time period is used for each highway link.
5.8.13 Two further sensitivity tests have also been used to screen the highway links to identify those requiring detailed assessment within the Chapter 23: Transport, Volume 2 of the ES (Document Reference: 6.2.23): section-based peak weeks, and annual average weekday traffic (AAWT). The findings of the screening, and subsequent analysis, are contained within the ES itself; a summary of these methods is set out below.
5.8.14 Section-based peak weeks have been calculated for each of the three construction sections (Section 1 at the southern end, Section 2 in the middle and Section 3 at the northern end). This method is robust in the following ways:

- This recognises the fact that the Proposed Development's construction is to be largely linear, and therefore by analysing the peak weeks associated with construction in each section it is possible to identify whether any additional links should also be analysed;
- The peak weeks for sections 1,2 and 3 occur in weeks 72,83 and 125 of the construction programme respectively, reflecting both the linear nature of construction and that the beginning and end of the overall programme generates a lower number of trips.
- This data is also robust as it has been calculated by dividing the weekly total by five working days, rather than seven.

Annual average weekday traffic (AAWT) has been calculated for each of the four construction years (1, 2, 3 and 4). It is robust in the following ways:

- Since flows for all four years are presented, the highest level of change out of each of the four years can be selected for each link in turn;
- AAWT as opposed to AADT (Annual Average Daily Traffic) has been used, such that all trip generation is compressed into weekdays rather than across seven days of the week;
- The method offers a broad picture of traffic across the entire study area (since all highway links are modelled during each of the years), which in turn enables any links which experience traffic flows for a relatively short period of the construction programme to still be captured by the screening process, compared to other methods which may focus on links which are used by traffic for longer periods of time.

Finally, the overall approach of adopting sensitivity tests to identify highway links for detailed assessment has itself been robust since any highway link which was found to be above the GEART (Institute of Environmental Assessment, 1993) thresholds (10% / 30% - see Chapter 23: Transport, Volume 2 of the ES (Document Reference: 6.2.23)) according to any of the three methodologies was subsequently analysed in greater detail.

Outputs

5.8.17 From the maximum assessment assumptions determined for each of the construction activities, the following estimates have been made for each construction site and temporary construction access point:

- vehicle movements - number of movements per vehicle type on a weekly basis per access point (HGV, LV split by staff and construction); and
- duration - duration of each construction activity at each associated temporary construction access point.
5.8.1 From these estimates, data is extracted for each of the three analysis methods described above (peak week, section-based peak week, AAWT). The data extracted for each of these methods includes:
- daily/weekday construction traffic across the whole onshore part of the proposed DCO Order Limits, split by personnel and construction LVs;
- HGV daily/weekday construction traffic across the whole onshore part of the proposed DCO Order Limits;
- total daily/weekday construction traffic across the whole onshore part of the proposed DCO Order Limits; and
- daily/weekday construction traffic on each highway link in the study area.

Vehicle movements summary

5.8.19 The approach considers a single onshore cable corridor from landfall through to a single onshore substation before connecting by a single onshore cable corridor into the existing substation.
5.8.20 Table 5-6 presents all vehicle movements pertaining to onshore cable corridor and onshore substation construction, broken down by vehicle type and year. Note that movements are all presented as two-way totals, for example an HGV travelling from base to compound is counted as one movement, and then the HGV returning to its base is counted as one movement, (i.e. a total of two movements).

Table 5-6 Two-way vehicle movement summary

Output

	Year $\mathbf{1}$	Year 2	Year 3	Year 4	Total
Peak weekly traffic across the onshore part of the proposed DCO Order Limits - LGV	71	585	340	200	585
Peak daily traffic across the onshore part of the proposed DCO Order Limits - HGV	77	638	371	218	$\mathbf{1 3 0 4}$
Total Vehicle Movements - HGVs	4,318	34,130	22,664	8,732	$\mathbf{6 9 , 8 4 4}$
Total Vehicle Movements - LGVs	5,790	105,216	62,226	12,180	$\mathbf{1 8 5 , 4 1 2}$

Page intentionally blank

6. Operation and maintenance traffic generation

6.1 Overview

6.1.1 The operational lifetime of the Proposed Development is expected to be around 30 years. Taking place after commissioning of the Proposed Development, operation and maintenance activities can be divided into three main categories:

- scheduled maintenance;
- unscheduled maintenance; and
- special maintenance in the event of major equipment breakdown and repairs.

6.2 Traffic generation

6.2.1 Maintenance of the onshore cable is expected to be minimal. During operation and maintenance, periodic testing of the cable is likely to be required (every two to five years). This will require access to the link boxes at defined inspection points along the onshore cable route. This will involve attendance by up to three light vehicles, such as vans, in a day at any one location. The vehicles will gain access using existing field accesses and side accesses as agreed with landowners to reach the relevant sections of the onshore cable.
6.2.2 Monitoring of the onshore substation will be done remotely using CCTV technology and other remote monitoring equipment. The security fencing installed during construction will remain in place. Certain areas of the onshore substation will have permanent light fittings, however, these lights will only be used when required for unscheduled maintenance or emergency repair purposes.
6.2.3 Unscheduled maintenance or emergency repair visits will typically involve a very small number of vehicles, typically light vans. Infrequently, equipment may be required to be replaced, then the use of an occasional HGV may be utilised, depending on the nature of the repair.
6.2.4 Inspection and minor servicing may be required for the electrical plant, but it is anticipated that the substation will require minimal scheduled maintenance and operation activities.

Impacts on National Parks from traffic generated from Newhaven Port in Study Area 2 has been considered.

Page intentionally blank

7. Decommissioning traffic generation

7.1 Onshore decommissioning

Onshore cable

7.1.1 It is anticipated that the onshore electrical cables will be left in-situ with ends cut, sealed and buried to minimise environmental effects associated with removal.

Onshore substation

7.1.2 The onshore substation may be used as a substation site after decommissioning of the Proposed Development or it may be upgraded for use by another offshore wind project. This will be subject to a separate planning application.
7.1.3 Should the onshore substation need to be decommissioned fully, however, the decommissioning works are likely to be undertaken in reverse to the sequence of construction works and involve similar levels of equipment. All relevant sites will be restored to their original states or made suitable for an alternative use.
7.1.4 The decommissioning duration of the onshore infrastructure may take a comparable amount of time as construction of the Proposed Development, up to four years, although this indicative timing may reduce.
7.1.5 Using Oakendene onshore substation search area as a location for assessment it is considered that only one highways link within Study Area 1 will require assessment for the decommissioning phase: Highways Link 27, due to the logical routes to the SRN from the onshore substation and anticipated traffic distribution.
7.1.6 It is considered that the decommissioning of the onshore substation will require the same levels of traffic generation as the construction phase and therefore the peak construction traffic generation of the construction phase will be used as a basis for assessment.
7.1.7 Unlike the assessment for the construction phase, the highways link (27) that requires assessment would only have to accommodate traffic associated with the onshore substation decommissioning and not the traffic associated with the onshore cable decommissioning as the onshore cable will be left in situ. As such traffic at this highways link will be less than set out in the assessment for the construction phase at these two links as the additional cable related traffic in the construction phase would not be present in the decommissioning phase. An assessment has still been provided for robustness due to the different future year for the decommissioning phase.
7.1.8 Table 7-1 shows the anticipated traffic impact during the decommissioning stage, which is de minimis.

Table 7-1 Onshore substation decommissioning traffic percentage impact per highways link

Link No	Future Year Base Traffic (2051)		Peak Week Staff Traffic (per day)		Percentage impact	
	Total vehicles	HGVs	Total vehicles	HGVs	Total vehicles	HGVs
27	21414	1069	156	109	0.7%	10.2%

8. Glossary of terms and abbreviations

Term (Acronym)	Definition
AADF	Annual average weekday flow
AAWT	Annual average weekday traffic
CBS	cement bound sand
CMB	construction management base
FOC	Fibre Optic Cable
ha	hectare
HDD	horizontal directional drill
HGV	Heavy Goods Vehicle
HVAC	High Voltage Alternating Current
ID	identification
JB	joint bay
kg	kilogram
Km	kilometre
kV	kilovolt
LGV	Light Goods Vehicle
m	metres
mm	millimetres
Preliminary Environmental Information Report (PEIR)	The written output of the Preliminary Environmental Impact Assessment undertaken for the Proposed Development. It was developed to support Statutory Consultation and presented the preliminary findings of the assessment to allow an informed view

Term (Acronym) Definition

	to be developed of the Proposed Development, the assessment approach that was undertaken, and the preliminary conclusions on the likely significant effects of the Proposed Development and environmental measures proposed.
TCC	temporary construction compound
TJB	transition joint bay

9. References

CrashMap, (2021). Crashmap. [online]. Available at: https://www.crashmap.co.uk/ [Accessed 4 April 2023].
Department for Transport (DfT), (2022). DfT Circular 01/2022 Strategic Road Network and the Delivery of Sustainable Development, Page 1-23. [online]. Available at: Strategic road network and the delivery of sustainable development - GOV.UK (www.gov.uk) [Accessed 4 April 2023].

Department for Transport (DfT), (2021). RAS0302 Reported road collision rates by severity, road type and class, Great Britain, ten years up to 2021
https://www.gov.uk/government/statistical-data-sets/reported-road-accidents-vehicles-and-casualties-tables-for-great-britain\#road-type-ras03 [online]. Available at: [Accessed 4 April 2023].
Department for Transport (DfT), (2020). Road Traffic Statistics. [online]. Available at: https://roadtraffic.dft.gov.uk/\#6/55.254/-6.053/basemap-regions-countpoints [Accessed 4 April 2023].

Department for Transport (DfT), (2021). Quarterly traffic estimates (TRA25), TRA2501: Road traffic (vehicle miles) by vehicle type in Great Britain. [online]. Available at: https://www.gov.uk/government/statistical-data-sets/tra25-quarterly-estimates [Accessed 30 June 2021].

Department for Transport (DfT), (2022). Road Safety Data.
https://www.data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/road-safetydata [online]. Available at: [Accessed 4 April 2023].
Department of Energy and Climate Change (DECC), (2011). Overarching National Policy Statement for Energy (EN-1). [online]. Available at:
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment data/file/47854/1938-overarching-nps-for-energy-en1.pdf [Accessed 4 April 2023].
E.On/RSK Environmental Ltd, (2012). Rampion Offshore Wind Farm, Environmental Statement, RSK, Section 29 Transport. [online]. Available at:
https://www.rampionoffshore.com/environmental-statement/ [Accessed 4 April 2023].
Google, (2021). Google Maps and Google Traffic. [online]. Available at https://www.google.co.uk/maps/ [Accessed 4 April 2023].
Horsham District Local Council, (2019). Draft Horsham District Local Plan 2019-2036. [online]. Available at:
https://strategicplanning.horsham.gov.uk/LocalPlanReview/viewCompoundDoc?docid=103 36756 [Accessed 4 April 2023].
Institute of Environmental Assessment (IEA), (1993). Guidance Note 1 - Guidelines for the Environmental Assessment of Road Traffic.

Mid Sussex District Council, (2018). Mid Sussex District Plan 2014 - 2031, Pages 78-79. [online]. Available at: https://www.midsussex.gov.uk/media/2367/district-plan-adoptionversion.pdf [Accessed 04 April 2023].

Ministry of Housing Communities and Local Government, (2021). National Planning Policy Framework, pages 31-32. [online]. Available at:
https://www.gov.uk/government/publications/national-planning-policy-framework--2 [Accessed 04 April 2023].

Office for National Statistics, (2011). Nomis Official Labour Market Statistics. [online] Available at https://www.nomisweb.co.uk/ [Accessed 04 April 2023].

Owen Williams Consultants, (1996). Newhaven Port Access Road - Site Plan, East Sussex County Council, Drawing 5A928/12/2. [online]. Available at:
https://www.eastsussex.gov.uk/roadsandtransport/roads/roadschemes/newhaven-port-access-road/scheme-details/ [Accessed 04 April 2023].
Planning Inspectorate (PINS). (2020a). Scoping Opinion: Proposed Rampion 2 Offshore Wind Farm. Case Reference EN010117, [online]. Available at: https://infrastructure.planninginspectorate.gov.uk/wp-content/ipc/uploads/projects/EN010117/EN010117-000045-EN010117 Scoping Opinion.pdf [Accessed 04 April 2023].
Planning Inspectorate, (2020b). Advice Note Seven: EIA: Process, Preliminary Environmental Information, and Environmental Statements (Version 7). [online]. Available at: https://infrastructure.planninginspectorate.gov.uk/legislation-and-advice/advice-notes/advice-note-seven-environmental-impact-assessment-process-preliminary-environmental-information-and-environmental-statements/ [Accessed 04 April 2023].

Rampion Extension Development Limited (RED), (2020). Rampion 2 Offshore Wind Farm

- Environmental Impact Assessment Scoping Report, [online]. Available at:
https://infrastructure.planninginspectorate.gov.uk/wp-content/ipc/uploads/projects/EN010117/EN010117-000006-EN010117\ \ Scoping\ Report.pdf [Accessed 04 April 2023].

Standards for Highways, (2020). Design Manual for Roads and Bridges. [online]. Available at: https://www.standardsforhighways.co.uk/dmrb/ [Accessed 04 April 2023].
Sustrans, (2021). Sustrans National Cycle Network Map. [online]. Available at: https://www.sustrans.org.uk/national-cycle-network [Accessed 04 April 2023].

West Sussex County Council (WSCC), (2022), West Sussex Transport Plan 2022-2036, Pages 26-29, 35, 44, 50-51. https://www.westsussex.gov.uk/media/17428/wstp.pdf [online]. Available at: [Accessed 04 April 2023].
West Sussex County Council (WSCC), (2020a). West Sussex Walking and Cycling Strategy 2016-2026, Pages 1-52. [online]. Available at:
https://www.westsussex.gov.uk/media/9584/walking cycling strategy.pdf [Accessed 04 April 2023].

West Sussex County Council (WSCC), (2020b). Permanent Automatic Traffic Counts. [online]. Available at: https://www.westsussex.gov.uk/roads-and-travel/traffic-management/traffic-counts/ [Accessed 04 April 2023].

West Sussex County Council (WSCC), (2021a). iMap. [online]. Available at: https://www.westsussex.gov.uk/land-waste-and-housing/public-paths-and-the-countryside/public-rights-of-way/public-rights-of-way-imap/imap/ [Accessed 04 April 2023].

West Sussex County Council (WSCC), (2021b). Bus routes and timetables. [online].
Available at: https://www.westsussex.gov.uk/roads-and-travel/travel-and-public-transport/bus-and-coach-travel/plan-your-journey/bus-routes-and-timetables/ [Accessed 04 April 2023].

Worthing Borough Council, (2023). Local Plan 2020-2036, Page 149-150. [online].
Available at: https://www.adur-worthing.gov.uk/media/Media, 169486,smxx.pdf [Accessed 04 April 2023].

Page intentionally blank

Annex A Traffic calculations

Page intentionally blank

\begin{tabular}{|c|}
\hline \& tal（LG \& \& \({ }^{6655} 2\) \& \& \& \& \& 126 \& \& \multicolumn{37}{|r|}{\multirow[t]{2}{*}{}} \\
\hline \& \& tcc \& NA \& \\
\hline vear \& week \& Accoss \& \[
\begin{gathered}
\text { Offshore } \\
\text { Construction } \\
\text { Base }
\end{gathered}
\] \& \& \& \(4{ }^{5}\) \& \& \& \& \& \& 15 \& 16 \& \& \& 21 \& 22 \& \& \& \({ }_{25}\) \& \({ }^{26}\) \& \& \({ }_{28}\) \& \& \& 32 \& 33 \& \& \& － \& \& \& － \& \& \& \& － \& \& \& \& \& \& \& \& \& \\
\hline \& \(\stackrel{1}{1}\) \& \& dase \& \\
\hline 1 \& \(\stackrel{1}{2}\) \& \(\stackrel{1}{2}\) \& \({ }_{\substack{48 \\ 48 \\ 48 \\ 48}}\) \& \(\bigcirc\) \& \& \(\bigcirc\) \& \& \& \& \& \& \(\bigcirc\) \& \& \(\bigcirc\) \& \(\bigcirc\) \& 0 \& \& \(\bigcirc\) \& \％ \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \& \& 응 \& － \& \& － \& \& \& \& \& \& \& \& \& ！ \& \& \& \& \& \& \& \& \\
\hline 1 \& \({ }_{4}^{4}\) \& \({ }_{4}^{4}\) \& \({ }_{48}^{48}\) \& \(\bigcirc\) \& \& 0 \& \& \(\bigcirc\) \& \(\bigcirc\) \& \& \& － \& \(\bigcirc\) \& － \& － \& \(\bigcirc\) \& － \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \& \& \(\bigcirc\) \& \(\bigcirc\) \& \& \(\bigcirc\) \& \& \(\bigcirc\) \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& － \\
\hline ！ \& \({ }^{5}\) \& \％\({ }^{5}\) \& \({ }_{48}^{48}\) \& \(\bigcirc\) \& \& 0 \& \& － \& \& \& \& 0 \& \& \& \& 0 \& － \& \(\bigcirc\) \& 0 \& 0 \& 。 \& \(\bigcirc\) \& \(\bigcirc\) \& \& \& \& \& \& － \& \& \& \& \& \& \& \& \& － \& \& \& \& \& \& \& \& \\
\hline 1 \& \(\stackrel{7}{8}\) \& 8 \& \({ }_{48}^{48}\) \& \(\bigcirc\) \& \& － \& \& \& \& \& \& \(\bigcirc\) \& \(\bigcirc\) \& \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& ． \& ， \& \(\bigcirc\) \& \(\bigcirc\) \& \& \& \(\bigcirc\) \& － \& \& \(\bigcirc\) \& \& 0 \& \& \& \& \& \& \& \％ \& \& \& \& \& \& \& \& \(\bigcirc\) \\
\hline 1 \& \(\stackrel{8}{9}\) \& \(\stackrel{8}{9}\) \& \({ }_{48}^{48}\) \& － \& \& \& \& \& \& \& \& \(\bigcirc\) \& \& \& 1 \& \& \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& － \& 0 \& 0 \& \& \& － \& \& \({ }^{\circ}{ }^{\circ}\) \& \& \& \({ }_{54}^{\circ}\) \& \& \& \& \& \& \& ： \& \& \& \& \& \& \& \& \(\bigcirc\) \\
\hline \& 10
11
11 \& \begin{tabular}{|c}
10 \\
11 \\
11
\end{tabular} \& \({ }_{48}^{48}\) \& \(\bigcirc\) \& \& \({ }_{\substack{36 \\ 36}}\) \& \& \(\bigcirc\) \& － \& \(\bigcirc\) \& \& \(\bigcirc\) \& ！ \& ！ \& ！ \& \(\bigcirc\) \& \(\bigcirc\) \& \& － \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \& \({ }^{36}\) \& \& \& \& \& \& \& ： \& \& \& \& \& \& \& \& \(\bigcirc\) \\
\hline \(\stackrel{1}{1}\) \& \({ }^{12}\) \& \({ }^{12}\) \& \({ }_{48}^{48}\) \& \& \& \({ }^{\frac{36}{36}}\) \& \& \& \& \& \& \(\bigcirc\) \& \& \& \& \& \& \(\bigcirc\) \& － \& － \& 。 \& \(\bigcirc\) \& － \& \& \& ． \& \& \& \(\bigcirc\) \& \& \& \& \& \& \& \& \& － \& \& \& \& \& \& \& \& \(\bigcirc\) \\
\hline 1 \& \(\stackrel{14}{15}\) \& \({ }^{14}\) \& \({ }_{\substack{96 \\ 96 \\ 96}}\) \& \(\bigcirc\) \& \& \({ }_{\text {ck }}^{36}\) \& \& \(\bigcirc\) \& \(\bigcirc\) \& \& \(\bigcirc\) \& － \& \(\stackrel{\square}{0}\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \& \(\bigcirc\) \& 。 \& 。 \& ． \& \(\bigcirc\) \& ！ \& \& \& \& － \& \& \(\bigcirc\) \& \& \& \& \& \& \& \& \& ！ \& \& \& \& \& \& \& \& \\
\hline 1 \& \({ }_{1}^{15}\) \& \({ }^{16}\) \& \({ }_{\substack{96 \\ 96 \\ 9}}\) \& \(\bigcirc\) \& \& \({ }_{36}\) \& \& \(\bigcirc\) \& \& \(\bigcirc\) \& \& \(\bigcirc\) \& \(\bigcirc\) \& － \& \& \(\bigcirc\) \& 0 \& \(\bigcirc\) \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \& ． \& \(\bigcirc\) \& \& \(\bigcirc\) \& \& \& \& \& \& \& \& \& － \& \& \& \& \& \& \& \& \(\bigcirc\) \\
\hline 1 \& \({ }_{17}^{18}\) \& \({ }_{18}^{17}\) \& \({ }_{\substack{96 \\ 96 \\ 96}}\) \& \(\bigcirc\) \& \& \(\bigcirc\) \& \& \(\bigcirc\) \& － \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& ： \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& 0 \& \(\bigcirc\) \& 0 \& ： \& \(\bigcirc\) \& \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& － \& \(\bigcirc\) \& \& \& \& \& \& \(\bigcirc\) \& － \& \& \& \& \& \& \& \& \(\bigcirc\) \\
\hline 1 \& \({ }^{19}\) \& \({ }^{19}\) \& \({ }_{\substack{96 \\ 96}}\) \& \(\bigcirc\) \& \& \(\bigcirc\) \& \& － \& \& \(\bigcirc\) \& \& \(\bigcirc\) \& 0 \& \& ： \& \(\bigcirc\) \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \& \& \(\bigcirc\) \& \(\bigcirc\) \& \& \(\bigcirc\) \& \& O \& \& \& \& \& \& \& ： \& \& \& \& \& \& \& \& \(\bigcirc\) \\
\hline 1 \& \& 20

20
20

20 \& ${ }_{96}^{96}$ \& － \& \& 0 \& \& － \& \& \& \& \& \& \& \& \& \& \& \bigcirc \& － \& \bigcirc \& \& \bigcirc \& \& \& \& \& \& $$
10
$$ \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline 1 \& ${ }_{23}^{22}$ \& ${ }^{22}$ \& －${ }_{96}^{96}$ \& \bigcirc \& \& － \& \& \bigcirc \& \& ： \& － \& \bigcirc \& \bigcirc \& ． \& － \& \bigcirc \& 0 \& $\stackrel{0}{0}$ \& \bigcirc \& 0 \& \bigcirc \& \bigcirc \& \bigcirc \& \& \& － \& \bigcirc \& \bigcirc \& \bigcirc \& \& \& \& \& \& \& \& $$
0
$$ \& － \& \& \& \& \& \& \& \& －

\hline 1 \& ${ }^{24}$ \& ${ }^{24}{ }^{24}$ \& ${ }_{\substack{96 \\ 96}}$ \& \bigcirc \& \& \bigcirc \& \& － \& \& \& \& － \& \& \& \bigcirc \& \& \& \bigcirc \& \& \bigcirc \& \& \& \& \& \& \& \& \& － \& \& \& \& \& \& \& \&

\hline 1 \& ${ }^{26}$ \& ${ }^{26}$ \& ${ }_{96}$ \& \bigcirc \& \& 0 \& \& 0 \& \& － \& \& 0 \& － \& － \& － \& ． \& 0 \& 0 \& \bigcirc \& \bigcirc \& ， \& 0 \& 0 \& － \& \& － \& － \& － \& ． \& \& \bigcirc \& \& \& \& \& \& \& ． \& \& \& \& \& \& \& \& －

\hline 1 \& ${ }^{28}$ \& ${ }^{\frac{27}{28}}$ \& ${ }^{96}$ \& \bigcirc \& \& \bigcirc \& \& \bigcirc \& \& ！ \& \& \& \bigcirc \& \& － \& ${ }^{30}$ \& － \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& \& － \& \& \& \bigcirc \& \& $$
\begin{array}{|l|}
\hline 0 \\
\hline 0
\end{array}
$$ \& \& \& \& \& \& \& \& － \& － \& \& \& \& \& \& \& \& －

\hline 1 \& ${ }^{29} \times$ \& ${ }^{29}$ \& ${ }_{96}^{96}$ \& ！ \& \& \bigcirc \& \& \bigcirc \& \& \bigcirc \& \& \bigcirc \& \& \& － \& \bigcirc \& \bigcirc \& \bigcirc \& \& \& \％ \& \bigcirc \& \bigcirc \& \& \& \bigcirc \& \bigcirc \& \& $$
\begin{aligned}
& 0 \\
& 0
\end{aligned}
$$ \& \& 0 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \bigcirc

\hline $\stackrel{1}{+}$ \& ${ }^{31}$ \& ${ }^{31}$ \& ${ }_{9}^{96}$ \& \& \& 0 \& \& \& \& \& \& \[
0

\] \& \[

0

\] \& \[

\div

\] \& \[

\div
\] \& 6 \& ${ }^{6}$ \& 0 \& 0 \& \bigcirc \& 0 \& 0 \& 0 \& \& \& \& \bigcirc \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline 1 \& ${ }^{32}$ \& ${ }^{32}$ \& ${ }_{96}^{96}$ \& \bigcirc \& \& － \& \& 0 \& \& \bigcirc \& \& － \& － \& \bigcirc \& － \& ${ }_{6}{ }^{6}$ \& － \& 0 \& \bigcirc \& \bigcirc \& \bigcirc \& 0 \& － \& \bigcirc \& \[
0

\] \& \bigcirc \& \bigcirc \& ${ }^{\circ}$ \& \[

10
\] \& \& 0 \& \& \& \& \& \& \& － \& \& \& \& \& \& \& \& －

\hline 1 \& | 34 |
| :---: |
| 35 | \& ${ }_{\text {34 }}^{34}$ \& ${ }_{\substack{96 \\ 96 \\ 9}}$ \& \bigcirc \& \& － \& \& ${ }_{42}$ \& \bigcirc \& \bigcirc \& － \& \bigcirc \& ${ }_{36}$ \& \bigcirc \& \％ \& ${ }^{6}$ \& ${ }^{6}$ \& \bigcirc \& \bigcirc \& \bigcirc \& $\stackrel{0}{0}$ \& \bigcirc \& － \& \therefore \& \％ \& \bigcirc \& ${ }_{24}$ \& \& \[

0
\] \& \& 0 \& \& \& \& \& \& \& ： \& \& \& \& \& \& \& \& \bigcirc

\hline \& ${ }^{36}$ \& ${ }_{36}$ \& \& \& \& \& \& \& \& \& \& \& \& ${ }^{-}$ \& \& \& \& \& \& \& \& \& \& \& \& \& － \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline $!$ \& －${ }_{\text {37 }}^{38}$ \& ${ }^{37}{ }^{38}$ \& ${ }_{96}$ \& \bigcirc \& \& \bigcirc \& \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& － $\begin{aligned} & 36 \\ & 0\end{aligned}$ \& ${ }^{36}$ \& \bigcirc \& ： \& \bigcirc \& ！ \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& ： \& \bigcirc \& ： \& \bigcirc \& \bigcirc \& \bigcirc \& $$
\div
$$ \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \bigcirc

\hline 1 \& ${ }^{39} 40$ \& ${ }^{39} 40$ \& ${ }_{\substack{96 \\ 96}}$ \& \& \& \bigcirc \& \& 12 \& \& \& \& \& 36 \& \& \& \& ${ }^{\circ}$ \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& 0 \& \& \& \& \bigcirc \& \& \bigcirc \& \& \bigcirc \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline 1 \& ${ }_{4}$ \& ${ }_{4}^{41}$ \& ${ }_{96}$ \& \bigcirc \& \& 0 \& \& 12 \& － \& － \& \bigcirc \& 0 \& ${ }^{36}$ \& － \& － \& 18 \& ${ }^{18}$ \& － \& \bigcirc \& \bigcirc \& 0 \& 0 \& 0 \& 0 \& \& － \& 0 \& － \& ． \& \& \& \& \& \& \& \& － \& ． \& $$
\begin{array}{l|l|}
0 \\
0
\end{array}
$$ \& \& \& \& \& \& \& 0

\hline \& ${ }_{4}^{43}$ \& ${ }^{42}$ \& ${ }_{96}$ \& － \& \& \bigcirc \& \& \& \& \& \& \& \& \bigcirc \& \& \& ${ }^{18}$ \& \bigcirc \& \bigcirc \& 0 \& \bigcirc \& \bigcirc \& \bigcirc \& \& \& \& \& \& $$
10
$$ \& \& \bigcirc \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline 1 \& ${ }_{4}^{48}$ \& ${ }_{45}^{44}$ \& ${ }_{\substack{96 \\ 96 \\ 96}}$ \& \bigcirc \& \& 0 \& \& \bigcirc \& \bigcirc \& $\xrightarrow{12}$ \& \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& ${ }_{18}^{18}$ \& ${ }^{18}$ \& \bigcirc \& ． \& \bigcirc \& \bigcirc \& 0 \& \bigcirc \& \bigcirc \& \& \bigcirc \& | 36 |
| :---: | :---: | \& 36 \& ． \& \& ！ \& \& \& \& \& \& 0 \& \& \& \& \& \& \& \& \& －

\hline $\stackrel{1}{1}$ \& ${ }_{46}^{48}$ \& ${ }^{46}$ \& 9 \& \bigcirc \& \& \bigcirc \& \& \bigcirc \& \bigcirc \& － \& \& ${ }^{12}$ \& \bigcirc \& 0 \& \bigcirc \& ${ }^{18}$ \& ${ }^{18}$ \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& 0 \& 0 \& \& \& \bigcirc \& \bigcirc \& \& \bigcirc \& \& 0 \& \& \& \& \& \& 0 \& \& \& \& \& \& \& \& \& 0

\hline \& ${ }_{48}^{47}$ \& \& ${ }^{96}$ \& － \& \& ： \& \& \bigcirc \& \bigcirc \& \bigcirc \& \& － \& ${ }^{12}$ \& \& \& \& \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& ． \& \& \& \bigcirc \& \& \bigcirc \& \& 。 \& \& \& \& \& \& ： \& \& \& \& \& \& \& \& \&

\hline \& 49 \& \& 0 \& 0 \& － \& 0 \& ${ }^{\circ}$ \& 0 \& － \& 0 \& \& － \& 0 \& － \& － \& 0 \& \bigcirc \& 0 \& \bigcirc \& \bigcirc \& \bigcirc \& 0 \& 0 \& $$
0 \%
$$ \& \bigcirc \& \& 0 \& － \& － \& \& 。 \& － \& \& \& \& \& \& \& \& \& \& \& \& \& \& －

\hline \& \& \& \bigcirc \& \bigcirc \& \& \bigcirc \& \& \bigcirc \& \bigcirc \& \bigcirc \& \& \bigcirc \& \bigcirc \& 0 \& ： \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& 0 \& \bigcirc \& \bigcirc \& \& ． \& \bigcirc \& \& \bigcirc \& \& \bigcirc \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \bigcirc

\hline 2 \& ${ }_{5}^{52}$ \& ${ }^{48}$ \& ${ }_{96}$ \& \bigcirc \& \& 0 \& \& ${ }_{96}$ \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& 12 \& － \& \bigcirc \& ${ }^{36}$ \& ${ }_{36}$ \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& $\stackrel{0}{0}$ \& 0 \& \& \& ． \& 12 \& \& \bigcirc \& \& \bigcirc \& \& \& ． \& \& \& \& － \& \& \& \& \& \& \& \& \bigcirc

\hline \& \& ${ }^{49} 5$ \& ${ }^{96}$ \&

\hline \& －${ }_{\text {56 }}^{57}$ \& ${ }_{51}^{51}$ \& ¢ ${ }_{\substack{96 \\ 460}}$ \& 0 \& \& $\stackrel{0}{0}$ \& \& \& \bigcirc \& ${ }_{80}$ \& \& ${ }_{36}$ \& ${ }^{12}$ \& \& \& － \& － \& \bigcirc \& \bigcirc \& \bigcirc \& 0 \& 0 \& \bigcirc \& \& \& \bigcirc \& 12 \& \& $$
\stackrel{\circ}{\circ}
$$ \& \& \bigcirc \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline 2 \& ${ }_{58}^{58}$ \& \& ${ }_{480}^{480}$ \& 48 \& \& 108 \& \& ${ }_{36}$ \& \bigcirc \& 60 \& \& ${ }^{36}$ \& － \& 0^{-1} \& － \& ${ }^{30}$ \& ${ }^{30}$ \& \bigcirc \& 0 \& \bigcirc \& ${ }_{36}$ \& 0 \& \bigcirc \& － \& \& － \& 12. \& \& $$
0
$$ \& \& \bigcirc \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \bigcirc

\hline $\stackrel{2}{2}$ \& ${ }^{59}$ \& ${ }_{56}^{54}$ \& ${ }_{4}^{460} 480$ \& ${ }_{48}^{48}$ \& \& ${ }^{108}$ \& \& ${ }^{36}$ \& \bigcirc \& ${ }_{60}^{60} 6$ \& \& | 36 |
| :--- |
| 36 | \& \bigcirc \& \bigcirc \& ： \& ${ }_{\substack{30 \\ 30 \\ 30}}$ \& － \& \bigcirc \& \bigcirc \& \bigcirc \& 0 \& \bigcirc \& ： \& \& \& \bigcirc \& － \& ${ }^{\circ} \mathrm{O}$ \& \[

10
\] \& \& 0 \& \& \& \& \& \& ： \& \& \& \& \& \& \& \& \& \bigcirc

\hline ${ }_{2}^{2}$ \& ${ }_{61}^{62}$ \& ${ }_{\substack{56 \\ 57}}$ \& ${ }_{\substack{480 \\ 460}}$ \& ${ }_{48}^{48}$ \& \& ： \& \& \bigcirc \& \bigcirc \& ${ }^{60}$ \& \bigcirc \& ${ }_{36}^{36}$ \& ${ }_{\substack{36 \\ 36}}$ \& \bigcirc \& \bigcirc \& ${ }_{4}^{48}$ \& ${ }_{\substack{48 \\ 30}}^{\substack{ \\30}}$ \& \bigcirc \& \bigcirc \& \bigcirc \& ${ }_{12}^{12}$ \& ： \& ： \& 0 \& \％ \& \bigcirc \& \bigcirc \& － \& \bigcirc \& \& 0 \& \& \& ． \& \& \& 0 \& ： \& \bigcirc \& \& \& \& \& \& \& \bigcirc

\hline 2 \& ${ }_{6}^{63}$ \& ${ }_{5}^{58}$ \& 480 \& 48 \& \& \bigcirc \& \& \bigcirc \& \bigcirc \& \bigcirc \& \& ${ }^{96}$ \& ${ }_{36}$ \& \bigcirc \& \bigcirc \& ${ }_{30}$ \& ${ }_{30}$ \& \bigcirc \& \bigcirc \& \bigcirc \& ${ }^{12}$ \& \bigcirc \& 0 \& \bigcirc \& \& \& \bigcirc \& \& $$
10
$$ \& \& 0 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \bigcirc

\hline \& ${ }_{65}^{64}$ \& ${ }^{50}$ \& 480 \& ${ }_{8}^{88}$ \& \& 0 \& \& － \& \bigcirc \& \bigcirc \& \& ${ }^{9}$ \& ${ }^{36}$ \& \& － \& 这 \& ${ }_{30}$ \& 0 \& \bigcirc \& \bigcirc \& ${ }_{12}^{12}$ \& 0 \& 0 \& \& \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& \& ！ \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& －

\hline $\stackrel{2}{2}$ \& ${ }_{66}^{67}$ \& ${ }_{61}^{62}$ \& | 460 |
| :---: |
| 460 | \& \& \& ${ }^{36}$ \& \& \& \& \& \& \& \& \& \& \& ${ }^{12}$ \& \bigcirc \& \bigcirc \& \bigcirc \& \& \& \& \& \& \& \& \& \bigcirc \& \& \％ \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline 2 \& ${ }^{68}$ \& ${ }_{6}^{63}$ \& ${ }_{460}$ \& ${ }_{36}{ }^{36}$ \& \& 0 \& \& － \& － \& \& \& ． \& ${ }^{132}$ \& \bigcirc \& \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& ${ }_{48}^{48}$ \& 0 \& － \& \& \& \& 60 \& \& $$
10
$$ \& \& \bigcirc \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \bigcirc

\hline $\stackrel{2}{2}$ \& $\xrightarrow{70}$ \& \& | 400 |
| :--- |
| 460 |
| 460 | \& － \& － \& ${ }^{\circ}$ \& \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& － \& ${ }^{132}$ \& \bigcirc \& \bigcirc \& $\stackrel{0}{0}$ \& － \& \bigcirc \& \bigcirc \& \bigcirc \& ${ }_{\text {cke }}^{\substack{108 \\ 108}}$ \& \bigcirc \& \bigcirc \& \bigcirc \& ． \& － \& ${ }^{6}{ }^{\circ}$ \& \bigcirc \& \bigcirc \& \& ${ }_{4}^{43}$ \& 0 \& \& － \& \& \& 0 \& \％ \& \& \& \& \& \& \& \& 0

\hline ${ }_{2}^{2}$ \& ${ }_{72}$ \& ¢ $\begin{aligned} & 66 \\ & 67 \\ & 68\end{aligned}$ \& \& ${ }_{\text {ck }}^{18}$ \& \& 12 \& \& － \& \& \bigcirc \& \& \bigcirc \& ${ }^{132}$ \& \bigcirc \& \bigcirc \& ${ }_{18}^{18}$ \& ${ }_{18}^{18}$ \& \bigcirc \& \bigcirc \& \bigcirc \& 俍108 \& \bigcirc \& \bigcirc \& \& \& － \& 6 \& \& \bigcirc \& \& ${ }_{432}^{432}$ \& \& \& \bigcirc \& \& \& \& － \& \& \& \& \& \& \& \& \bigcirc

\hline $\stackrel{2}{2}$ \& ${ }_{7}^{73}$ \& ${ }^{\text {c8 }}$ 69 \& $\substack{460 \\ 460}_{\text {4，}}$ \& ${ }_{72}^{72}$ \& \& ${ }_{12}^{12}$ \& \& \bigcirc \& 0 \& \bigcirc \& \& \bigcirc \& ${ }_{96}^{96}$ \& \& \& ${ }_{18}^{18}$ \& ${ }_{18}^{18}$ \& \bigcirc \& \bigcirc \& \bigcirc \& ${ }^{108}$ \& \bigcirc \& \bigcirc \& \& \& \& ${ }^{60}$ \& \& \bigcirc \& \& 43 \& \& \& \％ \& \& \& \& ： \& \& \& \& \& \& \& \& ：

\hline \& ${ }_{7}^{75}$ \& \％ \& | 460 |
| :---: |
| 460 |
| 18 | \& \& \& 12 \& \& － \& \& \bigcirc \& \& \& \& \& \& 18 \& ${ }^{18}$ \& \bigcirc \& \bigcirc \& \bigcirc \& ${ }_{96}$ \& \bigcirc \& \bigcirc \& \& \& \& \& \& \[

\stackrel{0}{\circ}
\] \& \& ${ }_{43}{ }^{43}$ \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline 2 \& ${ }_{7}^{76}$ \& ${ }_{72}^{12}$ \& ${ }^{460} 480$ \& ${ }_{72}$ \& \& 0 \& \& － \& \& － \& \& \bigcirc \& ${ }_{96}$ \& \& － \& ${ }^{18}$ \& ${ }^{18}$ \& \bigcirc \& \bigcirc \& \bigcirc \& ${ }^{96}$ \& $\stackrel{\square}{0}$ \& $\stackrel{0}{0}$ \& \& \& \& ${ }_{6}{ }^{\circ}$ \& \& $$
\begin{aligned}
& 0 \\
& 0
\end{aligned}
$$ \& \& ${ }_{438}^{438}$ \& \bigcirc \& \& \& \& \& \& \& \& \& \& \& \& \& \& －

\hline $\stackrel{2}{2}$ \& ${ }_{79}^{78}$ \& ${ }^{73}$ \& ¢ 460 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \bigcirc \& \& \bigcirc \& ${ }_{60}^{60}$ \& \& \& － \& \& \& \& \& \bigcirc \& \& ${ }_{438}^{438}$ \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& ${ }_{80}^{81}$ \& ${ }_{76}^{75}$ \& | 480 |
| :---: |
| 480 | \& \& \& \bigcirc \& \& ${ }^{36}$ \& \& \& \& \[

$$
\begin{aligned}
& 0 \\
& \vdots \\
& \hline
\end{aligned}
$$

\] \& 6 \& \& \& 0 \& \bigcirc \& \bigcirc \& \& 0 \& 60 \& 0 \& \& \& \& \& ${ }^{36}{ }^{36}$ \& \& \[

0
\] \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \bigcirc

\hline 2 \& ${ }_{8}^{82}$ \& \& | 460 |
| :--- |
| 480 |
| 460 | \& ${ }^{36}$ \& \& 0 \& \& ${ }_{36}$ \& － \& \bigcirc \& ． \& \bigcirc \& ${ }^{24}$ \& \bigcirc \& － \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& ${ }_{60}^{60}$ \& 0 \& \bigcirc \& \& \& \bigcirc \& ${ }^{6}$ \& \& － \& \& 5 \& \& \& \& \& \& \& － \& \& \& \& \& ${ }^{36}$ \& \& \& \bigcirc

\hline 2 \& ${ }_{84}^{88}$ \& ${ }_{79}^{78}$ \& ${ }_{460}^{460}$ \& ${ }_{96}^{96}$ \& \& 0 \& \& \& \& \& \& \& \& \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& \& \& \& \& \& \& \& \& \& \& $$
\begin{aligned}
& 0 \\
& 0
\end{aligned}
$$ \& \& ${ }^{500}$ \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& 36

0

\hline ${ }_{2}^{2}$ \& ${ }^{85}$ \& ${ }_{\substack{80 \\ 81}}$ \& ${ }_{\substack{460 \\ 460}}$ \& ${ }^{96}$ \& \& ${ }_{60}$ \& \& \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& \& \bigcirc \& \& \bigcirc \& \bigcirc \& \bigcirc \& ： \& ： \& 60 6 \& \bigcirc \& \bigcirc \& \& \& \& \& \& \bigcirc \& \& ${ }^{500}$ \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline 2 \& ${ }_{88}^{87}$ \& ${ }^{\frac{82}{83}}$ \& ${ }_{\text {4 } 40}^{460}$ \& ${ }^{36}$ \& \& ${ }^{60}$ \& \& ${ }^{36}$ \& \& \& \& \& \& \& \& \& \bigcirc \& － \& \& \bigcirc \& \％ 6 \& － \& \& \& \& \& 48 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \bigcirc

\hline ${ }_{2}^{2}$ \& ${ }^{88}$ \& \& 㐌400 \& ${ }_{\substack{36 \\ 36}}$ \& \& 60
60
6 \& \& ${ }^{36}$ \& － \& \bigcirc \& \bigcirc \& \bigcirc \& 0 \& \& － \& － \& 0 \& 0 \& 0 \& 0 \& 60
60
60 \& \bigcirc \& － \& \& \& \bigcirc \& ${ }_{36}^{36}$ \& ${ }^{12}$ \& \bigcirc \& \& ${ }^{50}{ }_{50}^{50}$ \& \& \& \& \& \& \& 0 \& ${ }^{2}$ \& \& \& ${ }^{6}$ \& \& \& \& －

\hline $\stackrel{2}{2}$ \& ${ }^{90}$ \& ${ }^{\frac{85}{86}}$ \& ${ }_{\substack{460 \\ 460}}^{\text {40 }}$ \& ${ }^{36}$ \& \& ${ }^{60}$ \& \& ${ }^{36}$ \& － \& \bigcirc \& \& \bigcirc \& － \& \bigcirc \& ${ }_{6}^{60}$ \& \bigcirc \& \bigcirc \& \& \& \& ${ }^{36}$ \& \bigcirc \& \bigcirc \& \& ${ }^{50}$ \& － \& \& \& \& \& ${ }^{\circ}$ \& － \& \& \& \& ${ }^{\frac{1}{6} 6}$ \& － \& \& \& \bigcirc

\hline ${ }_{2}^{2}$ \& ${ }^{92}$ \& ${ }_{\substack{87 \\ 88}}$ \& \& \bigcirc \& \& \bigcirc \& \& \bigcirc \& \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& 0 \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& \& \bigcirc \& \bigcirc \& \& \& \& \bigcirc \& \& \bigcirc \& \& ${ }^{500}$ \& \& \& \& \& \& \& \& \& \& \& \& \bigcirc \& \& \& ${ }^{36}$

\hline 2 \& ${ }_{9}^{94}$ \& \& 年 40 \& － \& \& \bigcirc \& \& 0 \& － \& \bigcirc \& 0 \& － \& \bigcirc \& \bigcirc \& ${ }^{\circ}$ \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& － \& \bigcirc \& \& \& \& \bigcirc \& \& \bigcirc \& \& ${ }^{668}$ \& \& \& \& \& \& \& － \& \& \& \& ， \& 12 \& \& \& ${ }_{36}^{36}$

\hline \& ${ }^{96}$ \& ${ }_{91}$ \& 480 \& － \& \& 0 \& \& 0 \& \& 0 \& \& 0 \& \& \& \bigcirc \& 0 \& \bigcirc \& － \& \& 0 \& 0 \& \& \& \& \& \& \& \& \bigcirc \& \& ${ }_{48}$ \& 。 \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline $\stackrel{2}{2}$ \& ${ }^{98}$ \& ${ }_{9}^{92}$ \& ${ }_{\substack{460 \\ 460}}$ \& \bigcirc \& \& \bigcirc \& \& \bigcirc \& － \& \bigcirc \& － \& \bigcirc \& － \& \bigcirc \& \bigcirc \& ！ \& \bigcirc \& \bigcirc \& \bigcirc \& ！ \& \bigcirc \& \bigcirc \& \bigcirc \& － \& \& \& － \& \& \bigcirc \& \& ${ }^{36}$ \& ，${ }_{12}^{12}$ \& \& \& － \& \& \bigcirc \& \& － \& \& \& \& ${ }^{12}$ \& \& \& ${ }^{36}$

\hline \& \& \& 460 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \bigcirc \& \& \& \bigcirc \& \bigcirc \& \bigcirc \& \& \& \& \& \& \& \& \& 12 \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

Reeport	Receptor Location	Hour		Trat				Growh Rate to 022						${ }_{\text {Future Assessment }}^{\text {Year }}$							24Hour			$\frac{1}{\text { Trafic }}$		$\frac{\text { Fulur Y Yar }}{24 \text { tour }}$						Develomment Tafic \% \% lmpact (202627]				
		Total	Hav	Total	hav	Speed (15sino)	Base Year	Venicles	Havs	Total	hav	Total	hav		Toileal	Havs	Total	hav	Total	hav	Total	hav	Lv	otal	hav	Tot		hav	Total		hav	Total	hav		Total	нav
	Ferry Foad	2022 ATC					2022			${ }^{1925}$	${ }^{314}$	${ }^{1907}$	${ }^{310}$	${ }^{2026}$	${ }^{1.0746}$	${ }^{1.075}$	${ }^{2069}$	${ }^{338}$	${ }^{2049}$	${ }^{334}$	117	${ }^{12}$		117	2	208		${ }^{349}$	1110		${ }^{345}$	0.6\%	3.46			
2	church Lane	9859	${ }^{106}$	9644	1072		${ }_{2017}^{2017}$	${ }_{\substack{1.0607 \\ 10005}}^{\text {10, }}$	$\xrightarrow{1.027} 1$	${ }_{\text {10958 }}^{10298}$	${ }^{1135}$	$\frac{10299}{6028}$	${ }^{1101}$	${ }^{2026}$	$\frac{1.0746}{10746}$	$\frac{1.075}{1.075}$	${ }_{\text {1238 }}^{11238}$	${ }_{2}^{1221}$	${ }^{10993}$	${ }^{1183}$	${ }_{117}^{135}$	51	${ }_{84}^{117}$	${ }^{117}$	${ }_{5}$	${ }^{113}$		${ }_{3}^{1225}$	${ }^{1110}{ }^{1634}$		${ }^{1183}$	1.0\%\%	$\frac{0.0 \%}{18 \%}$			
$\stackrel{3}{4}$		${ }^{26618}$	${ }_{1}^{233} 1$	${ }_{\substack{5869 \\ 22781}}$	${ }_{\substack{237 \\ 1159}}$	40	$\stackrel{2019}{2019}$	1.0205 1.0035 1	$\xrightarrow{1.0075} 1$	${ }_{2}^{62938}$	${ }_{135}^{235}$	${ }_{\substack{6048 \\ 2346}}^{\substack{\text { 24, }}}$	${ }_{\substack{239 \\ 1167}}$	$\xrightarrow{2026}$	${ }^{1.0} 1.0746$	$\stackrel{1.075}{1.075}$	${ }_{\text {c6ib }}^{684}$	${ }_{1}^{274} 1$	${ }_{\text {chase }}^{6498}$	${ }_{1255}^{235}$	${ }^{135}$	${ }_{31}^{51}$	${ }_{30}^{84}$	${ }^{135}$	${ }^{51}$	${ }^{688}$		${ }_{1}^{325}$	${ }_{\text {2639 }}^{659}$		${ }_{\substack{308 \\ 1288}}$	$\frac{2.0 \%}{0.2 \%}$	$\frac{18.76 \%}{2.46}$			
5	12259 Westo of Wick	00	${ }^{857}$	${ }^{1088}$	809	${ }^{43}$	2019	1.0305	1.0075	22083	${ }^{863}$	11421	815	${ }^{2026}$	${ }^{1.0746}$	1.075	24805	${ }^{928}$	${ }^{12273}$	${ }^{876}$	${ }^{192}$	8	184	192	8	249		936	${ }^{1246}$		${ }^{885}$	0.8%	0.9\%			
6	1288 Northo of Wick	${ }^{13248}$	${ }_{5} 51$	1279	${ }_{490}$	30	2019	1.0305	1.0075	13652	${ }^{555}$	${ }^{13168}$	494	${ }^{2026}$	${ }^{1.0746}$	1.075	14671	597	14151	${ }^{531}$	8	8	0	8	${ }^{8}$	${ }^{146}$		605	${ }^{14155}$		${ }_{539}$	0.1\%	${ }^{1.46}$			
7	12884 Leminiser	13546	692	13075	${ }^{651}$	42	${ }_{2019}^{2019}$	1.0805	1.0075	13959	${ }^{698}$	${ }_{13473}$	${ }_{656}$	${ }^{2026}$	${ }^{1.0746}$	1.075	15000	${ }^{750}$	14478	${ }^{7} 05$	${ }^{34}$	${ }^{34}$	\bigcirc	${ }^{34}$	${ }^{34}$	${ }^{150}$		${ }^{784}$	${ }^{14512}$		${ }^{738}$	-	4.5\%			
9	A27, Aundel Staion	${ }^{37234}$	1613	31574	1435	40	2019	1.305	1.0075	33732	1625	32538	1446	2026	${ }_{1}^{10746}$	1.075	36249	174	39895	${ }^{1554}$	${ }_{98}$	56	42	${ }_{98}$	56	${ }^{363}$		1803	${ }^{3506}$		1611	${ }^{0.3 \%}$	3.2\%			
11		${ }^{31936}$	${ }^{1757}$	30805	${ }^{1563}$	60	2019	${ }^{1.0305}$	1.0075	32910	1770	31744	1575	2026	${ }^{1.0746}$. 075	${ }_{35355}$	$\stackrel{0}{1903}$	$\stackrel{0}{34112}$	$\stackrel{\square}{1693}$	${ }_{117}$	${ }_{76}$	${ }_{42}$	${ }^{117}$	${ }^{\circ} 6$	${ }^{354}$		$\stackrel{0}{1979}$	${ }^{0} 9$		$\stackrel{0}{1769}$		4.0\%			
12	A27 High Savivigoon	776	923	21969	${ }^{821}$	30	2019	${ }_{1}^{1.0306}$	1.0075	${ }^{23473}$	${ }^{930}$	22841	${ }_{827}$	2026	${ }^{1.0788}$	1.075	${ }^{25323}$	1000	${ }^{24226}$	890	120	${ }^{96}$	24	120	${ }^{96}$	254		1096	${ }^{2454}$		985	0.5\%	9.9\%			
13	A24AA27 Oftingoon (Waren Road)	3077	1012	29887	${ }^{900}$	40	${ }^{2019}$	${ }_{1}^{1.0036}$	${ }^{1.0075}$	31719	1020	${ }^{30995}$	${ }_{907}^{907}$	${ }^{2026}$	${ }^{1.0788}$	1.075	${ }_{34218}$	1096	${ }^{33006}$	${ }^{975}$	${ }^{120}$	96	${ }^{24}$	${ }^{120}$	96	${ }^{343}$		1192	${ }^{33122}$		1071	${ }^{0.3 \%}$	8.7\%			
${ }_{14}^{14}$	${ }_{\text {A24 Fincon }}^{\text {A280 Long furlong }}$		${ }^{627} 20$	20	558	40	${ }_{2018}^{2022}$	1.045	1.016	${ }_{\substack{26899 \\ 18580}}$		${ }_{\text {25946 }}^{17883}$		2026		$\stackrel{1.075}{1.075}$	${ }_{20019}^{20044}$	${ }^{6987}$	${ }^{27999}$	${ }^{609}$	${ }_{46}^{0}$	28	18	${ }_{4}$	${ }_{28}$			${ }^{6955}$	${ }^{1933}$		${ }^{609}$	0.0\% 0	0.7\%			
16	${ }^{12283}$ Westot 124	2197	${ }_{750}$	21374	${ }^{727}$	41	2019	1.0306	1.0075	${ }_{22649}$	${ }^{755}$			2026	${ }_{1.0788}$	1.075	${ }^{24344}$	${ }^{812}$	${ }^{2784}$	${ }^{787}$	${ }^{71}$	0	71	71	0			${ }^{812}$			${ }^{787}$	0.3\%	0.0\%			
17	A283 Easto 1 A 24						2022			11430		${ }^{11295}$	${ }^{292}$	2027	${ }^{1.0868}$	1.093	12422	2543	12275	${ }^{2506}$	${ }^{38}$	0	${ }^{38}$	${ }^{38}$	0			2543	${ }^{1231}$		2506	0.3\%	0.0\%			
19	B2135, South of Astust	${ }^{3444}$	105	3339	104	${ }^{48}$	2019	1.0006	1.0075	${ }^{3550}$	106	${ }^{3502}$	105	2027	${ }^{1.0868}$	1.093	${ }_{3558}$	${ }^{116}$	3807	115	0	0	0	0	0	385		${ }^{116}$	${ }^{3807}$		${ }^{115}$	0.0\%	0.0\%			
${ }_{20}^{20}$		${ }^{20445}$		${ }_{\substack{20230 \\ 3399}}^{\substack{\text { and }}}$	${ }_{\text {che }}^{5180}$	${ }_{42}{ }^{52}$	${ }^{2019}$	- $\frac{1.0306}{10066}$	$\frac{1.0075}{1.0075}$	${ }_{\substack{21112 \\ 3657}}$	${ }_{1}^{5698}$	-	-	${ }^{2026}$	${ }_{\text {l }}^{1.07888}$	$\frac{1.075}{1075}$	${ }_{\substack{\text { 22776 } \\ 3948}}^{\text {32 }}$	${ }_{\text {1723 }}{ }^{638}$	${ }^{22491}$	${ }_{\text {¢ }}^{1604}$	${ }^{15}$	0	${ }^{15}$	${ }^{15}$	0	${ }^{227}$		${ }^{633}$	${ }^{2249}$		${ }_{\substack{617 \\ 164}}^{\text {104 }}$	${ }^{0.00 \%}$	0.0\%			
${ }_{22}^{21}$		${ }^{36374}$	${ }_{362}^{1036}$	${ }_{6294}$	${ }_{353}$	${ }_{29}^{40}$	${ }_{2019}$	${ }_{\text {l }}^{1.0000}$	1.0075	${ }_{6569}$	${ }_{364}^{1048}$	${ }^{30352}$	${ }_{\text {355 }}^{1989}$	${ }_{2027}^{2027}$	${ }_{\substack{1.08888}}^{\text {1.088 }}$	${ }_{1}^{1.075}$	${ }_{7}{ }_{7}$	398	${ }^{3} 7015$	${ }_{388}^{1004}$	${ }_{36}$	0	${ }_{36}$	${ }^{5}$.	J942		${ }_{398}$	${ }^{\text {7785 }}$		${ }^{1088}$	0.5\%	0.0\%			
${ }^{23}$	A281, South Shemantury		${ }^{341}$	${ }^{7652}$	${ }^{334}$	40	2018	1.045	1.016	8090	${ }^{346}$	7999	340	2027	${ }^{1.0888}$	1.093	8792	378	8893	${ }^{371}$	${ }^{36}$	0	36	${ }^{36}$	0	882		378	${ }^{8729}$		${ }^{371}$	0.4\%	0.0\%			
${ }^{24}$	A281, South or cowidd		141	5866	${ }^{125}$	30	2019	${ }^{1.0036}$	${ }^{1.0075}$	6267	${ }^{142}$	6045	${ }^{126}$	${ }^{2027}$	${ }^{1.0888}$	1.093	6811	${ }^{155}$	6570	${ }^{138}$	0	0	0	0	0	68		155	${ }^{6570}$		${ }_{138}^{138}$	0.0\%	0.0\%			
${ }_{2}^{25}$	A288, Comolo Coner		${ }_{9} 97$	${ }^{21596}$	${ }_{\text {\% }}^{882}$	${ }_{30}$	${ }_{2019}^{2019}$	${ }^{1.0036}$	${ }_{1}^{1.0075}$	${ }_{\text {2074 }}^{2087}$	${ }^{998}$	${ }_{\text {22037 }}^{22095}$	${ }_{\substack{888 \\ 668}}^{\text {crem }}$	${ }^{2027}{ }^{2027}$	${ }_{\text {l }}^{1.00888}$	1.1093	${ }_{\substack{2077 \\ 18933}}^{1}$	${ }^{1091}$	${ }_{\text {24839 }}^{2489}$	${ }^{971}$	${ }^{6}$	0	6	${ }^{6}$	0	${ }^{250}{ }^{189}$		${ }_{8}^{1091}$	${ }^{241996}$		${ }^{971}$	${ }^{0.0 \%}$	0.0\%			
${ }_{26}^{27}$		${ }^{16094}$	${ }^{7} 74$	${ }_{16305}^{1685}$	$\stackrel{663}{14}$	30 60	$\underset{\substack{2019 \\ 2019}}{ }$	(1.0368	$\frac{1.0075}{1.0075}$	$\underset{\substack{1721 \\ 879}}{ }$		${ }_{\text {l }}^{1689}$	668 14	${ }_{2020}^{2020}$	${ }_{\text {L }}^{1.0668}$	$\stackrel{1.033}{1.075}$	$\xrightarrow{18933}$	${ }_{880}^{17}$	${ }_{9288}^{1828}$	${ }_{1}^{730}$	\bigcirc	0	0	0	0	${ }_{94}^{189}$		${ }^{820}$	${ }^{18268}$		${ }^{730}$	${ }^{0.00 \%}$	${ }^{0.00 \%}$			
${ }^{29}$	A272, Westot A A23	1689	${ }^{124}$	16291	${ }^{644}$	${ }^{40}$	2019	${ }^{1.0036}$	1.0075	17406	${ }^{729}$	16789	649	${ }_{2027}$	${ }^{1.0868}$	1.093	18917	797	${ }_{1824} 18$	${ }^{709}$	${ }^{6}$		${ }^{6}$	${ }^{6}$		${ }^{189}$		${ }^{797}$	${ }^{18252}$		${ }^{709}$	0.0\%	0.0\%			
30	A23, Northo the A A72				3381		2019	1.0306	1.0075	74094		71469	${ }_{3007}$	${ }^{2027}$	${ }^{1.0888}$	1.093	${ }_{80325}$	4431		${ }^{3943}$	3	0	${ }^{3}$	3	0	${ }^{805}$					${ }^{3943}$	0.0\%	0.0\%			
${ }_{31}^{32}$		3147	149	${ }^{3036}$	${ }_{133}$	30	$\frac{2022}{2019}$	10306	1.0075		${ }_{1}^{1497}$	${ }_{\text {che }}^{7128}$	${ }_{\text {l }}^{1461}$	${ }_{2027}^{2027}$	${ }^{1.08888}{ }_{1}^{1.0868}$	1.093 1.093	${ }_{\text {7995 }}^{\text {7955 }}$	${ }_{164}^{1636}$	${ }_{\substack{7338 \\ 3000}}$	${ }_{1}^{1997}$	0	0	\bigcirc	0	\bigcirc	${ }^{795}$		${ }_{\text {l }}^{1636} 1$	${ }^{7838}$		${ }_{1597}^{1497}$	${ }^{0.0 \% 6}$	0.0\%			
${ }_{3}$	A23. Notht of the A272	78611	3118	${ }_{7} 7826$	2774	60	2019	1.0006	1.0075	${ }_{8} 81016$	${ }^{314}$	${ }^{78147}$	${ }^{2795}$	${ }_{2027}$	${ }^{1.08688}$	1.093	${ }_{88049}$	${ }^{3434}$	${ }^{849390}$	${ }^{3055}$	80	65	14	80	${ }^{65}$	${ }_{881}$		3499	${ }^{8501}$		${ }^{3121}$	${ }^{0.1 \%}$	1.9\%			
${ }^{34}$	A27, Westot A A23		${ }^{24292}$	${ }^{62783}$	${ }^{2154}$	60	${ }^{2019}$	${ }^{1.0036}$	1.0075	${ }^{67059}$	${ }^{2439}$	${ }^{64684}$	${ }^{2170}$	${ }^{2027}$	${ }^{1.0888}$	1.093	72880	${ }^{2666}$		12	${ }^{121}$	${ }^{92}$	29	${ }^{121}$	${ }^{92}$			${ }^{2758}$	7041		${ }^{2644}$	0.2\%	3.4\%			
${ }_{36}^{35}$			${ }_{5}^{2652}$	-68652	2388	${ }_{40}^{60}$	${ }_{2019}^{2019}$	(1.036			${ }_{552}^{263}$		${ }^{2507}$	${ }_{\substack{2027 \\ 2026}}$	(1.068	1.095	7976	314	${ }^{7} 7694$	${ }^{2795}$	4	26	15	4	${ }^{26}$	${ }^{797}$		507	${ }^{7} 72035$		281	${ }^{0.16}$	0.8\%			
${ }_{37}$	${ }^{\text {A259 Easto of Wick }}$		${ }_{469}$	${ }_{2} 23880$	${ }_{417}^{417}$	${ }_{40}^{40}$	${ }^{2019}$	$\stackrel{1}{1.0005}$	$\stackrel{1}{1.00075}$	${ }_{26512}^{2653}$	${ }_{4}^{573}$	${ }^{26800}$	490	${ }_{\text {2020 }}^{2026}$	$\frac{1.0746}{1.0746}$	$\stackrel{+}{1.075}$	${ }^{28809}$	${ }_{504}^{508}$	${ }_{2644}^{27969}$	${ }_{452}^{585}$	${ }_{80}^{28}$	${ }^{3}$	${ }_{80}^{25}$	${ }_{80}^{28}$	${ }^{3}$			${ }_{507}^{508}$	${ }_{2}^{26622}$		${ }_{452}^{531}$		${ }^{0.50}$			

Section 2

			How	Ease Tamt	,	cins		siomm	Eeto 2021	$\frac{301}{2010}$	Sterser				,			Huer				Horr	18tiol			orr	18				asamaid	
	faeoeorer Loation	Toal	нov	Toal	ноv		${ }_{\text {Base vear }}$	Venicices	Havs	Toal	hav	Toal	Hev		andes	Hevs	Toal	hav	Toal	hav	Toal	hov	Toal	нav	Toan	hav	Toan	hov		hav	Toal	неv
	Coment len		${ }^{1106}$	${ }^{984}$	1072			1 10077	1027		${ }^{\text {314 }}$		(in	${ }^{2020}$		1075		122	${ }^{1098}$	${ }^{1188}$	\bigcirc	\bigcirc					1098			${ }^{\text {cosem }}$		
	Fore			${ }_{\text {¢ }}^{\text {52789 }}$	${ }_{\substack{279 \\ 1159}}$	40		${ }^{1.0005}$					${ }_{\substack{29 \\ 1167}}^{\text {ar }}$	$\underset{\substack{2008 \\ 2020}}{\substack{208}}$		${ }_{\text {1, }}^{1.075}$	${ }_{\substack{6828}}^{2685}$	${ }_{1}^{244}$			$\stackrel{\square}{7}$					${ }_{\text {274 }}^{\substack{241 \\ 142}}$	${ }_{\substack{4294 \\ 2929}}^{\text {a }}$					
			${ }_{\substack{851 \\ 561}}^{\text {¢ }}$	${ }_{\text {11088 }}^{1278}$	${ }_{\text {809 }}^{890}$	${ }_{\substack{48 \\ 30}}$							${ }_{\substack{89 \\ 484}}^{\text {dis }}$		(out	$\frac{10,75}{1.075}$		${ }^{988}$	${ }^{\text {2273 }}$	${ }_{\substack{876 \\ 581}}^{\substack{\text { ¢ }}}$	$\stackrel{9}{34}$	-	${ }_{3}^{9}$		${ }^{22415}$			-				
	A2eatmmeser									${ }^{3559}$	${ }^{688}$	13473	${ }_{66}$		246	1075		${ }^{50}$	${ }^{12478}$	${ }^{205}$						${ }_{70}$	${ }_{1245}$	${ }^{205}$				
,	and	8734.	${ }_{16} 13$	154	${ }^{1935}$	40		095	${ }^{\text {L075 }}$	372	1205	3238	${ }^{1446}$	2006	076	075	${ }_{3}^{3248}$	${ }^{1878}$	${ }^{3} 8965$	${ }^{1} 5$.			${ }_{30256}$	$\stackrel{1}{1788}$	${ }_{3092}$	${ }_{156}$				
		${ }^{31989}$			${ }^{1568}$			10095	100		177	${ }^{3174}$	${ }^{1555}$		${ }_{10746}$	1075		$\stackrel{\circ}{180}$	${ }^{3412}$	${ }_{\text {I }}^{1689}$.		-	${ }_{\text {Stases }}$	$\stackrel{1}{1904}$						
${ }_{18}^{12}$				(198)	oso				+	\%19				${ }_{\substack{\text { 2006 } \\ 2006}}^{\text {20, }}$						${ }_{97}$												
		2391	${ }^{627}$	${ }^{22880}$	688	40	${ }^{2018}$	$\underline{1045}$	1016	${ }_{2089}^{2089}$		${ }^{29296}$	687	${ }_{2026}^{2020}$	${ }_{1}^{102888}$	${ }_{1075}^{1075}$		${ }^{\text {as8 }}$	${ }^{27991}$	${ }^{\text {cia }}$	${ }^{65}$	4	${ }_{6}$	4		${ }^{689}$	${ }^{2029}$	${ }^{613}$				
${ }_{\substack{16 \\ 16}}$	隹	297	${ }^{150}$	${ }_{\text {arem }}$	${ }_{17}$	4	${ }^{2019}$	${ }^{10006}$	${ }^{10075}$	cose				${ }^{2028}$			${ }_{\text {a }}^{2045}$				${ }_{\substack{188}}^{\substack{18}}$	${ }_{5}^{5}$	${ }_{\text {coic }}^{\substack{188}}$	${ }_{5}$			${ }^{\substack{12934 \\ 2989}}$					
${ }_{19}$	Rest somumot Suws	344	${ }^{105}$	${ }^{3399}$	${ }^{104}$	48		1.006	1.10075		${ }_{\text {cose }}^{\substack{186}}$	${ }^{\text {asa }}$	${ }_{\substack{2029 \\ 105}}^{\text {105 }}$							${ }_{\substack{2168 \\ 115}}$								${ }^{2068}$				
${ }_{21}^{20}$				${ }^{2020}$	${ }_{1}^{1481}$		${ }^{2119}$	${ }^{1.0006}$	${ }_{\text {L }}^{1.0075}$		${ }_{\substack{\text { ces } \\ 188 \\ \hline 188}}$		(148			${ }_{\text {L }}^{1.075}$			${ }^{2049}$	${ }_{\substack{\text { cit } \\ 108}}^{\text {cos }}$.	.	.			${ }^{63}$	${ }_{\text {20, }}^{2 \times 89}$	${ }_{\substack{\text { cir } \\ 1 \\ 104}}$	${ }^{0.008}$			
${ }^{\frac{22}{23}}$			${ }_{\substack{342 \\ 34}}^{\substack{34}}$	${ }_{\text {cke }}^{685}$	${ }_{3}^{35}$	${ }_{\frac{20}{40}}$		${ }^{100065}$	${ }^{10075}$		${ }^{346}$		${ }_{\substack{355 \\ 300}}^{\text {30, }}$	${ }_{2}^{2027}$	${ }^{108088}$	${ }^{1.0088}$	${ }^{7140}$	${ }^{338}$	${ }_{\text {cols }}^{8065}$	${ }^{388}$	${ }_{4}^{47}$	12	${ }^{47}$		${ }^{71888}$	${ }_{4}^{40}$	${ }^{2085}$					
${ }_{24}^{24}$											${ }_{1}{ }_{12}$	${ }_{6045}$				(088		${ }_{155}$	${ }^{659}$	${ }_{188}^{18}$												
${ }_{\substack{26 \\ 26 \\ \hline}}$			${ }_{\substack{99 \\ \hline 74 \\ \hline 74 \\ \hline}}$	${ }_{\substack{21586 \\ 18005}}^{\text {a }}$	${ }_{\text {che }}^{868}$		${ }^{\text {20,9 }}$	${ }^{1.0096}$	${ }_{\substack{1.0075 \\ 1.0075}}$	${ }^{20074}$	${ }_{\substack{981 \\ 751}}$			$\xrightarrow{\substack{2027 \\ 2027}}$				${ }^{1081}$	${ }_{\text {2488 }}^{\substack{\text { 2489 }}}$	${ }_{\substack{97 \\ 700}}$		\bigcirc	${ }_{11}^{11}$			${ }^{1098}$	${ }_{\text {24893 }}^{2189}$	${ }^{\text {977 }}$	${ }_{\text {orem }}^{0.008}$	${ }_{\text {ouem }}^{0.008}$		
${ }_{27}^{27}$	Wrenem Lene soumo 1 Rer2		${ }^{18}$		${ }^{14}$			${ }_{\text {cose }}$	${ }_{1}^{1007}$		18	${ }_{8}^{848}$	${ }_{18}$	2028	${ }_{10}^{1078}$	${ }^{1.005}$	98	17	${ }^{15}$	${ }^{15}$					${ }^{988}$			${ }^{15}$				
${ }_{\substack{20 \\ 30}}$	Alta Westoras				${ }_{\substack{644 \\ 381}}^{\substack{\text { a }}}$	${ }_{\substack{40 \\ 60}}$		${ }^{1.0006}$	${ }^{\frac{1}{10075}} 1.0$	$\xrightarrow{\text { ITate }}$	${ }_{\text {cos }}^{\substack{789}}$	${ }_{\text {\% }}^{18789}$	${ }_{\substack{689}}^{\substack{\text { cis }}}$			${ }_{\text {1, }}^{1.098}$	${ }_{\substack{18975 \\ 8085}}$	${ }_{\substack{797 \\ 439}}^{\text {P1 }}$	${ }^{18247}$	${ }_{\substack{709 \\ 394}}^{\text {34 }}$	${ }^{11}$	4	10				${ }_{\substack{18888 \\ 7788}}$		0.08			
${ }_{3}^{31}$	Pex		${ }^{14902}$	${ }_{\text {ation }}^{\text {anc }}$						${ }_{\substack{7368 \\ 324}}$	${ }^{11997}$	${ }^{\frac{12122}{}{ }^{2129}}$	${ }_{\substack{1681 \\ 184}}^{\substack{184}}$	${ }_{202}^{2027}$		${ }^{1.0098}$	${ }_{\substack{7395 \\ 3,25}}$			${ }_{\substack{1597 \\ 4.8}}^{1}$,				
${ }_{3}{ }^{28}$			${ }^{3118}$		${ }^{2774}$	${ }_{6}$		${ }^{1.00068}$		${ }^{810176}$	${ }^{314}$	${ }^{78447}$	${ }^{2735}$		${ }_{\text {l }}^{10}$	${ }^{1.009}$	${ }_{\text {cose }}$	${ }^{3844}$	${ }^{84390}$	205						${ }^{340}$		${ }^{3061}$				
${ }_{35}{ }^{35}$																												${ }_{\substack{236 \\ 2780}}$				
${ }_{\substack{36 \\ 37}}$			${ }_{\substack{\text { sid } \\ 469}}$		${ }_{4}^{488}$	${ }_{40}$	$\xrightarrow{\substack{2019 \\ 2029}}$		\%		${ }_{\substack{\text { si2 }}}^{4}$		200			(10,			$\underbrace{\substack{294}}_{\substack{2366}}$	(588	$\stackrel{9}{12}$		$\stackrel{\square}{2}$			${ }^{59}$	${ }^{27800^{5} 5}$	${ }_{\text {ck }}^{588}$		Ome		

Receptor	Receplor Location	24 Hour		${ }_{\text {Base }}^{\text {Trafitic- }}$ Historic Col				Growt Rate to 2021		${ }^{24 \text { Hour }}$ 202 Base Year of Assessment							$\frac{\text { Future Year of Asessment }}{\text { 24tour }}$				$\frac{\text { Paek bevelomenent Trafic }}{24 \text { Itour }}$					$\frac{\text { Futur Year }+ \text { Deevelomment Peak }}{\text { athour }}$									
		Total	Hav	Total	hav	Speed (354\%\%)	Base Year	Total venicles	Havs	Total	hav	Total	Hav			Havs	Total	Hav	Total	hav	Oota	hav	Lv	Total	нav	To		hav	Total		Hav	Total	hav	Total	нау
	Fery Foad									1925	${ }^{314}$	1907	${ }^{310}$	2026	${ }^{1.0776}$	1.075		${ }^{338}$	2049																
${ }_{3}$	Churh Lane	$\frac{9859}{6025}$	${ }^{1106}$	${ }_{\text {9644 }}^{589}$	${ }^{1072}$	${ }^{41.9}$	${ }_{2017}^{2019}$	${ }_{\substack{1.0607 \\ 1.0035}}^{1.0}$	1.027 1.0075 1.05	${ }_{\substack{10458 \\ 6209}}$	${ }^{1135}$	${ }_{\text {¢ }}^{10229}$	${ }_{2}^{1101}$	$\xrightarrow{2026}{ }_{2026}$	${ }_{\substack{1.0746 \\ 1.0746}}$	1.075 1.075	${ }_{\text {l }}^{112388}$	${ }^{1274}$	${ }_{\text {l }}^{10993}$	${ }^{1183}$	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	${ }^{11} 6$		${ }^{1274}$	${ }^{10999}$		${ }^{183}$	$\frac{0.0 \%}{0.0 \%}$	0.0\% 0.0% 0.0		
4	A27 Westo fornnel	23618	1302	${ }^{22781}$	${ }^{1159}$	40	2019	1.0805	1.075	${ }^{24338}$	${ }^{1312}$	${ }^{24476}$	${ }_{1167}$	${ }_{2026}$	${ }_{1}^{1.7746}$	1.075	26154	1410	25228	${ }^{1255}$	${ }^{32}$	32	0	32	32			1442	25280		${ }^{287}$	0.1\%	23\%		
5	A2259 Westo o Wick	2480	857	${ }^{11083}$	${ }^{809}$	${ }^{43}$	2019	1.0305	1.075	${ }^{20893}$	863	${ }^{11421}$	815	${ }^{2026}$	${ }_{1.0746}$	1.075	24805	${ }^{928}$	${ }^{12273}$	${ }^{876}$	0	0	0	0	0	24		928	${ }^{12273}$		${ }^{376}$	0.0\%	0.0\%		
6	A284 Northof Wick	${ }^{13248}$	${ }^{551}$	${ }^{12779}$	${ }_{490}$	${ }^{30}$	2019	${ }^{1.0035}$	${ }_{1}^{1.0075}$	${ }^{13655}$	${ }^{555}$	${ }^{13168}$	${ }_{4}^{494}$	${ }^{2026}$	${ }^{1.0746}$	${ }^{1.075}$	${ }^{146771}$	${ }^{597}$	${ }^{1415}$		9	0	9		0			${ }_{5}^{597}$	${ }^{14160}$			${ }^{0.1 \%}$	0.0\%		
7	A2884 Lyminster	13546	${ }^{692}$	13075	651	${ }_{4}$	2019	1.0305	1.0075	${ }^{13959}$	698	${ }_{13473}$	${ }_{656}$	${ }^{2026}$	1.0746	1.075	15000	${ }^{750}$	14478	705	9	\bigcirc	9	9	0	150		${ }^{750}$	${ }_{14887}^{14}$		${ }^{705}$	${ }^{0.10 \%}$	${ }^{0.00 \%}$		
$\stackrel{8}{9}$		${ }^{734}$	1613	31574	${ }_{1435}$	40	2019	${ }_{1}^{1.0305}$	1.075	${ }^{37732}$	1625	32538	${ }_{146} 14$	2206	${ }_{10} 10746$	075	${ }^{36249}$	${ }_{1747}^{174}$	34895	${ }_{1554}$	${ }^{32}$	32	0	${ }^{32}$	${ }^{32}$	36		${ }_{1779}$	34997		${ }_{587}$	0.1\%	${ }^{\text {1.9\% }}$		
																	\bigcirc	0	0	0	0	0		0	0	0		0	0		0	0.0\%	0.0\%		
11	A27, South o C Cossbush	996	${ }^{1757}$	38005	${ }^{1563}$	60	2019	1.0805	1.0075	32910	1770	31744	1575	${ }^{2026}$	${ }^{1.0746}$	1.075	${ }_{35855}$	1903	34112	${ }^{1693}$	${ }^{41}$	32	9	${ }^{41}$	32			1935	${ }^{34154}$		${ }^{126}$	$0^{0.1 \%}$	${ }^{1.7 \%}$		
${ }_{12}^{12}$	${ }^{\text {ar }}$ A Hilin Savivingon	${ }^{2776}$	${ }^{923}$	${ }_{2}^{21969}$	${ }^{821}$	${ }^{30}$	${ }^{2019}$	${ }^{1.0036}$	1.0075	${ }_{\text {23473 }}^{2347}$	${ }^{930}$	${ }^{22041}$	907	${ }_{2026}^{2026}$	${ }^{1.0788}$	${ }^{1.075}$	31818	${ }^{1000}$	${ }^{242926}$	${ }^{890}$	0	0		0	0	${ }^{25}$		1096	${ }^{242426}$		890	0.0\%	${ }^{0.0 \%}$		
13	${ }^{\text {atanar }}$	131	1012	${ }_{298820}^{2988}$	¢900	40	${ }_{2019}^{2018}$		$\underset{\substack{1.0075 \\ 1.016}}{10.0}$	-31779 26899	${ }^{1020}$	${ }^{30595} \times$	${ }_{507}^{907}$	2026 2026		${ }_{1}^{1.075}$	${ }_{\substack{34218 \\ 2099}}$	${ }_{6}^{1095}$	${ }^{337909}$	${ }_{609}$	${ }^{26}$	0	26	${ }^{26}$	\bigcirc			${ }_{685}^{1096}$	${ }^{33006}$		${ }_{\text {cos }}$	0.1\%	${ }^{0.0 \%}$		
${ }_{15}$	${ }^{\text {A2880 Long Furlong }}$			ATC	558	40	${ }_{2022}$			${ }^{18580}$	${ }^{3653}$	${ }_{1}{ }_{17888}$	${ }_{349}$	${ }_{2026}$	${ }_{1}^{1.0788}$	${ }_{1}^{1.075}$	20044	${ }^{3927}$	${ }^{19292}$	3740	${ }_{4}{ }^{4}$	${ }^{34}$	${ }^{9}$	43	${ }^{34}$			${ }^{3961}$	${ }^{19335}$		374	${ }^{0.2 \%}$	0.9\%		
${ }_{17}^{16}$	A283 Westot 124	97	750	${ }^{21374}$	${ }^{727}$	41	${ }^{2019}$	1.0306	1.0075	${ }^{22649}$	${ }^{\text {556 }}$	${ }^{202028}$	${ }^{732}$	${ }^{2026}$	${ }_{1}^{1.0788}$	${ }^{1.075}$	${ }^{24434}$	${ }^{812}$	${ }^{23764}$	${ }^{787}$	0	0	0	0	0	${ }^{24}$		${ }^{812}$	${ }^{23764}$		${ }^{787}$	0.0\%	0.0\%		
	${ }^{\text {ARP3 }}$	344	${ }^{202}$		104	㫜	$\frac{2022}{2029}$	10206	1075		${ }^{2336}$							${ }^{2543}$		2006	${ }^{23}$	\bigcirc	${ }^{23}$	${ }^{23}$					${ }^{12298}$				0.0\%		
20	A2033 Seromino		595	${ }^{20330}$	$5{ }^{50}$	52	2019	1.0006	${ }_{1}^{10075}$	${ }^{21112}$	${ }_{589}$	${ }_{20849}$	${ }_{5}$	${ }^{2026}$	${ }_{1}^{4} 100788$	1075	${ }^{20776}$	${ }^{633}$	${ }^{2049}$	${ }_{617}$	0	0	-	0	0			${ }_{6} 63$	${ }^{2291}$		517	0.0\%	\%		
	A24. Southo 1 A 2 72		1636	${ }_{3} 3991$	${ }^{1481}$	40	2019	${ }_{1.0306}$	${ }_{1} 1.0075$	${ }^{36567}$	${ }_{1648}$	35032	${ }^{1993}$	${ }^{2026}$	${ }_{1.0788}$	1.075	${ }^{39448}$	1772	${ }^{37792}$	1804	90		58	90	32			1804	${ }^{37882}$		637	${ }^{0.2 \%}$	${ }^{1.8 \%}$		
22	B2116 Patidge Grieen Road		362	${ }^{2264}$	${ }^{353}$	${ }^{29}$	2019	1.0306	1.075	6569		64			${ }^{1.0888}$	1.093	7140	${ }^{398}$	7015	${ }^{388}$	4	4		4	4			402	7019		392	0.1\%			
${ }^{23}$	A28, South Shemanaury	${ }^{7739}$	${ }^{341}$	${ }^{7} 56$	${ }^{334}$	40	2018	1.0454	1.016	8090	${ }^{346}$	7999	${ }^{340}$	2027	${ }^{1.0888}$	1.093	8792	${ }^{378}$	8993	${ }^{371}$	6	6	0	6	6			${ }^{384}$	869		377	0.1\%	${ }^{1.6 \%}$		
${ }^{24}$	A281, South of Cowiold	6081	${ }^{141}$	5866	${ }^{125}$	30	2019	1.0306	1.0075	6287	142	6045	126	2027	${ }^{1.0868}$	1.093	6811	${ }^{155}$	6570	${ }^{138}$	4	4	0	4	4			159	6573		${ }^{142}$	0.1\%	${ }^{23 \%}$		
25	A881, Comold Center	22889	991	21596	882	30	2019	1.0306	1.0075	23074	${ }_{998}$	${ }^{22257}$	${ }_{888}$	${ }^{2027}$	${ }^{1.0868}$	1.093	25077	1091	24889	${ }^{971}$	159	32	${ }^{127}$	159	32			${ }^{1124}$	${ }^{24448}$		003	0.6\%	3.0\%		
${ }^{26}$	A272, Staion foad, Comold	${ }_{1689}^{1689}$	${ }^{745}$	${ }_{\substack{16305 \\ 888}}$	${ }_{663}^{14}$	${ }^{30}$	${ }_{2019}^{2019}$	${ }^{1.0036}$	1.0075	${ }_{17821}^{1789}$	${ }^{751}$	${ }_{\substack{16804 \\ 848}}^{184}$	${ }_{668}^{68}$	${ }^{2027}$	${ }_{\text {1.0688 }}^{1.0888}$	1.093	${ }^{18933}$	${ }^{820}$	${ }^{18283}$	${ }^{730}$	${ }_{159}^{159}$	${ }_{32}{ }^{1}$	${ }^{127}$	${ }^{159}$	${ }^{32}$	${ }^{19}$		${ }_{\text {893 }}^{85}$	${ }_{18922}^{1892}$		762	${ }^{0.8 \%}$	${ }^{3.9 \%}$		
${ }_{29}^{27}$	Whenem Lene, Soum of A272	${ }^{18889}$	${ }_{724}^{16}$	${ }_{18291}^{1829}$	${ }_{644}^{14}$	${ }_{40}^{60}$	${ }_{2019}^{2019}$	${ }_{\text {l }}^{1.0006}$	$\xrightarrow{1.0075}$		${ }^{1729}$	${ }_{\text {16889 }}^{1888}$	${ }_{649}^{14}$	${ }_{2027}$	${ }_{\text {1.0888 }}^{\text {1.088 }}$	${ }_{1}^{1.093}$	${ }_{19817}^{1897}$	${ }_{7} 79$	${ }_{18247}^{1815}$	${ }_{7} 709$	${ }_{254}$	${ }_{89}$	${ }_{166}$	${ }^{254}$	${ }_{89}$			${ }_{886} 89$	${ }_{1}^{18501}$		${ }_{798}$	${ }^{1.3 \%}$	${ }_{\text {11.1\% }}$		
30	A23, Northo It te A A272	94	4024	69397	3581	60	2019	1.0306	1.0075	74094	4054	${ }^{71469}$	3807	${ }^{2027}$	${ }^{1.0888}$	1.093	80525	4431	77673	${ }^{3943}$	${ }^{85}$	${ }^{36}$	49	${ }^{85}$	36			4467	77758		979	${ }^{\text {0.1\% }}$	0.8\%		
${ }^{31}$	B2188, Sayelis Common			ATC		${ }^{37.6}$	2022			${ }^{7336}$	${ }^{197}$	${ }^{7212}$	${ }^{1461}$	2027	${ }^{1.0888}$	1.093	${ }^{7995}$	1836	${ }^{7838}$	${ }_{1597}$	0	0	0	0	0			1636	${ }^{7838}$		597	0.0\%	0.0\%		
${ }^{32}$	B2116, Hentited Roaa, Abbuune	${ }^{3147}$	149	${ }^{3036}$	${ }^{133}$	${ }^{30}$	${ }^{2019}$	${ }^{1.0096}$	${ }_{1}^{1.0075}$	${ }^{3243}$	150	${ }^{3128}$	${ }^{134}$	${ }^{2027}$	${ }^{1.0888}$	1.093	${ }^{3525}$	${ }^{164}$	3400	${ }^{146}$	0	0	0	0	0			${ }^{164}$	3400		${ }^{146}$	0.0\%	0.0\%		
${ }_{\text {33 }}^{34}$	A2, Northot he A272	78611	${ }^{3118}$	${ }_{\text {7 }}^{\text {78826 }}$	${ }_{2}^{2714}$	${ }_{60}^{60}$	${ }_{2}^{2019}$		1.0075 10055	${ }_{\text {81016 }}^{67059}$	${ }^{3491}$	${ }_{\substack{78467 \\ 6484}}$	${ }_{2}^{2795}$	${ }_{2027}^{2027}$	${ }^{1.0088}$	1.093 1.093		${ }_{2364}^{3836}$	${ }_{\substack{84930 \\ 7028}}$	${ }^{3065}$	${ }_{92}^{92}$	${ }^{27}$	${ }_{4}^{65}$	${ }_{42}^{92}$	${ }^{27}$	${ }^{88}$		${ }^{34666}$	${ }^{80022}$		${ }^{\text {2082 }}$	${ }^{0.196}$	${ }^{0.88 \%}$		
${ }^{35}$	A27, Eastof of 23	${ }^{117}$	2252	68652	${ }^{2538}$	60	2019	1.0386	1.0075	${ }^{73351}$	${ }^{2873}$	70753	2257	${ }^{2027}$	${ }_{1}^{1.0888}$	1.093	79718	3141	76894	2795	54	27	${ }^{27}$	54	27	79		3168	7698		822	0.1\%	0.9\%		
36	A259, Westo o Church Street		${ }^{548}$	24920	${ }_{488}$	${ }^{40}$	2019	1.0305	1.0075	2682	552	25680	491	${ }^{2026}$	1.0746	${ }_{1} 1.075$	28809	594	27596	${ }^{528}$	0	0	0	0	0			59	2796		528	0.0\%	0.0\%		
37	A2259 East of Wick	757	469	23880	417	40	2019	1.0035	1.0075	25512	473	24608	420	${ }^{2026}$	1.0746	${ }^{1.075}$	27415	${ }^{508}$	26444	452	6	0	6	6	0			508	26450		45	0.0\%	0.0\%		

Year 1 AAWT

Receppor	Receeplor Locaion	${ }_{2}{ }^{24}$ Hour ${ }^{\text {Base Tratic - Mistoric Counts }}$						Growt Rate to 2021						${ }_{\text {Future Assessment }}^{\text {rear }}$			$\frac{\text { Future Year of Assessment }}{24 \text { Hour }}$				$\frac{\text { Paak } \text { Qevelopment Trafic }}{24 \text { Hour }} 1$				${ }^{\text {Futu }}$	Yeart	velopme			
		otal	Hav	Total	hav	Speed (85t\%\%)		otal Venicles	Havs	Total	Hgv	Total	Hgv		venicles	Havs	Total	hav	Total	hav			v Tota		Toal	hav	Total	hav	Total	hav
	Ferry Road			atc			${ }^{2022}$			${ }^{1925}$	${ }^{314}$	${ }^{1907}$	${ }^{310}$	2026	${ }^{1.0746}$	1.075	2089	${ }^{338}$	200	${ }^{334}$,		2029	${ }^{338}$	2049	${ }^{334}$	0.0\%	\%
2		859	1106	9644	1072		${ }^{2017}$		${ }_{1}^{1.027}$	10458	${ }_{1}^{1135}$		1101			1.075	${ }^{11238}$	${ }^{1221}$		${ }^{1183}$			${ }^{8} 8$							
3	${ }^{\text {Forra }}$ Read	${ }^{23618}$	25	5889	$\stackrel{237}{1159}$		${ }^{2019}$	${ }_{\substack{1.0835 \\ 1.0005}}^{1}$	$\stackrel{1.0075}{1.0075}$		${ }_{\substack{255 \\ 1312}}$	${ }_{\text {cour }}^{6047}$	${ }^{239} 1167$	$\frac{2026}{2026}$	${ }_{1}^{1.0746}$	1.075 1.075 1	${ }^{6672}$	${ }_{1}^{274}$	${ }_{26599}^{659}$	${ }_{1}^{257}$	${ }_{6}^{10}$	$6{ }^{6}{ }^{4}$	${ }^{4} 10$		${ }_{2682}^{68150}$	${ }_{1}^{2815}$	${ }_{25599}^{659}$	${ }^{262}$	$\frac{0.2 \%}{0.2 \%}$	
${ }_{5}^{4}$	${ }_{\text {Al }}^{\text {Ar Westo } 1 \text { A Annuel }}$	${ }_{22618}^{22400}$	${ }^{1302}$	${ }_{\text {¢ }}^{12789}$	${ }_{8}^{1159}$	${ }_{4}^{40}$	${ }_{2}^{2019} 20$	1.0035 1.035	1.0075 1.0075	${ }_{\substack{24338 \\ 2038}}^{\text {2039 }}$	${ }_{\substack{1312 \\ 883}}^{\text {¢ }}$	${ }_{\substack{23476 \\ 1.1421}}^{1029}$	$\underset{815}{1167}$	$\underset{\substack{2026 \\ 2026}}{ }$	${ }^{1.0746}$	1.075 1.075 1	${ }_{26154}^{2085}$	${ }^{1410}$	${ }_{12228}^{258}$	${ }_{1876}^{1255}$	${ }^{6}$		2		${ }_{\text {26ibo }}^{24819}$	${ }_{\text {145 }}^{1929}$			${ }^{0.0 \% 6}$	
6	A284 Northo O Wick		${ }_{551}$	${ }^{12779}$	${ }_{4} 90$	${ }_{30}$	${ }_{2019}$	${ }_{1}^{1.0035}$	1.0075 1.0	${ }_{1}^{20652}$	${ }_{555}$	${ }_{13188}$	${ }_{494}$	${ }_{2026}$	${ }^{1.07746}$	${ }_{1}^{1.075}$	${ }^{\text {14671 }}$	${ }_{597}$	14151	${ }_{531}$	4	14	${ }_{4} 4$		${ }^{24675}$	${ }_{598}$	${ }^{14155}$	${ }^{532}$	0.0\%	${ }^{0.1 \%}$
7	A284 L L M mister		692	13075	651	${ }^{42}$	2019	1.035	1.0075	13359	698	13773	656	2026	${ }^{1.0746}$	1.075	15000	${ }^{750}$	1478	${ }^{705}$	7	$4{ }^{4}$	47		15008	${ }^{7} 5$	14886	708	0.0\%	0.5\%
9																					0	${ }^{\circ}$	0	0	${ }^{\circ}$	175	\bigcirc	${ }^{\circ}$	Hovio	
9	A27, Annode Sataion		${ }^{1613}$	31574	${ }^{1435}$	40	${ }^{2019}$	${ }^{1.0035}$	${ }_{1} 1.0075$	${ }^{33732}$	${ }^{1625}$	32588	1446	2026	${ }^{1.0746}$	1.075	${ }^{36249}$	${ }^{1747}$	34985	${ }^{554}$	10		10		36288	${ }^{1154}$	${ }^{39974}$	${ }^{1562}$	(0.0\%\%	4\%
11	A27, Southo O Coiossust		1757	30805	${ }^{1563}$	60	${ }_{2019}$	1.0305	1.0075	${ }^{32910}$	1770	31744	1575	${ }^{2026}$	${ }^{1.0746}$	1.075	${ }_{35365}$	${ }_{1003}$	${ }^{34112}$	${ }_{1} 1693$	${ }^{15}$	${ }^{-1} 6$	${ }^{6} 15$		${ }^{35380}$	1912	${ }^{34128}$	${ }^{1703}$	0.0\%	0.5\%
12	A27 High Savivigoon		${ }^{923}$	21969	${ }^{821}$	${ }^{30}$	2019	1.0306	1.0075	${ }^{23473}$	930	22841	${ }^{827}$	${ }^{2026}$	${ }^{1.0788}$	1.075	${ }^{25233}$		2426	890			13		22335		${ }^{24438}$	${ }^{899}$	0.0\%	10\%
13	A24AA27 Ottingoron (Waren Road)		1012	29887	900	${ }^{40}$	2019	1.0006	1.0075	31719	1020	30595	907	2026	${ }^{1.0788}$	1.075	34218	1096	33006	975	14		14		${ }^{34232}$	1109	${ }^{3302}$	${ }^{988}$	0.0\%	
14 15 15		25/31		${ }_{\text {ATC }}^{2482}$	558	${ }_{40}^{400}$	$\frac{2018}{2022}$	1.0454	1.016	26899		${ }_{\substack{25946 \\ 17883}}^{\text {cen }}$	- ${ }_{\text {567 }}^{347}$	${ }_{\substack{2026 \\ 2026}}$	${ }_{\text {ctior }}^{\substack{1.0788 \\ 10788}}$	1.075 1.075	${ }_{2019}^{20044}$	${ }_{3927}{ }^{685}$	${ }_{10291}^{27992}$	${ }^{6740}$	4	${ }_{1}{ }^{2}$	2 3		${ }_{2024}^{2024}$	${ }_{3988}^{698}$	${ }_{1}^{27996}$	${ }^{612}$	0.0\%	-
${ }^{16}$	A283 Westof 124	2197	750	21374	727	41	${ }_{2019}$	1.0306	1.0075	22649	${ }^{3} 55$	22028	${ }_{7} 73$	${ }_{2026}$	${ }^{1.00788}$	1.075	${ }^{24434}$	${ }_{812}$	${ }^{23784}$	${ }^{\text {737 }}$	1	\bigcirc	${ }^{1} 1$		${ }_{2}^{24435}$	${ }_{8}^{312}$	${ }_{2}{ }^{23765}$	${ }^{787}$	0.0\%	
${ }_{19}^{19}$		3144	${ }^{105}$	3399	104	48	2019	${ }_{1}^{1.0306}$	${ }_{1.0075}$		${ }_{\substack{236 \\ 106}}$	$\substack{11295 \\ 3502}$	$\xrightarrow{2292}$	2027	${ }^{1.0068}{ }_{1}^{1.0888}$	1.093 1.093 1	3858	116	3807	115	6	${ }^{4}{ }^{2}$		${ }_{0}$	${ }^{3388}$	116	3807	115	年0.0\%	
${ }^{20}$	${ }^{\text {A283, Sierying }}$		585	20330	570	52	2019	1.0036	1.0075	21112	599	20849	574	${ }^{2026}$	${ }^{1.0788}$	1.075	${ }^{22776}$	${ }^{633}$	201	617					${ }^{2277}$	${ }^{633}$	${ }^{22492}$	${ }^{617}$		0.0\%
${ }^{21}$	A24, Southo (A272	${ }^{3681}$	${ }^{1636}$	${ }^{33991}$	1481	${ }^{40}$	2019	1.0306	1.0075	36567	1648	35032	1993	${ }^{2026}$	${ }^{1.0788}$	1.075	3948	${ }^{1772}$	3792	${ }^{1604}$	2	02			${ }^{39450}$	${ }^{1772}$	37794	${ }^{1005}$	0.0\%	0.0\%
${ }_{2}^{22}$		${ }_{\text {cher }}^{689}$	${ }_{\text {362 }}{ }_{341}$		${ }_{\text {3 }}^{\text {334 }}$	${ }_{40}^{29}$	${ }_{2019}^{2018}$	$\frac{1.036}{1.045}$	1.0075 1.016 1.0	6659		64955 7999	- 3 35	${ }_{2027}^{2027}$	${ }_{\text {¢ }}^{1.00688}$	1.093 1.093 1	${ }_{8}^{7790}$	${ }_{378}^{398}$	${ }_{8015} 80$	${ }_{\text {cher }}^{388}$	\bigcirc	\bigcirc	0		${ }^{7740}$	${ }^{398}$	${ }_{8094}^{2016}$	${ }^{388}$	0.0\%\%	号0.0\%
${ }^{24}$	A281, South of Cowlod	6081	141	5966	125	30	2019	1.0306	1.0075	${ }^{6287}$	142	6045	${ }^{126}$	2027	${ }^{1.0888}$	1.093	6811	155	6570	${ }^{138}$	0	0	0		6811	155	6570	${ }^{138}$	0.0\%	0.0\%
25	A288, Comitod Cener	2289	991	21596	${ }_{882}$	${ }^{30}$	2019	1.0306	1.0075	${ }^{23074}$	998	${ }^{22257}$	${ }_{888} 8$	2027	${ }^{1.08888}$	${ }^{1.093}$	25077	1091	24189	${ }^{971}$		0			2078	1092	24190	971	0.0\%	0.0\%
${ }^{26}$	A272, Staiton Road, Comolod	${ }^{16094}$	${ }^{745}$	${ }^{16305}$	${ }_{663}$	${ }^{30}$	${ }^{2019}$	${ }^{1.0936}$	1.0075	${ }^{17421}$	${ }^{751}$	${ }^{16894}$	${ }_{668}^{68}$	${ }_{2026}^{2027}$	${ }^{1.08888}$	${ }^{1.093}$	${ }_{10938}^{1898}$	${ }^{820}$	${ }_{18283}^{1829}$	${ }^{730}$	-	$\bigcirc 1$			${ }^{19394}$	${ }^{821}$	${ }_{\text {ler }}^{\substack{1824 \\ 915}}$	${ }_{7}^{730}$	0.0\%	0.0\%
${ }_{29}^{27}$		833			14 644	60 40	2019 2019	1.0036 1.0036	+1.0075	879 17706	${ }_{72}^{129}$	-16489	14 649	${ }_{2026}^{2027}$		1.075 1.093	${ }^{\text {18989 }}$	${ }^{1797}$	${ }_{18247}^{191}$	${ }_{7} 709$	2	$1{ }_{1}^{1}$	2	1	${ }_{18919}$	${ }^{798}$	${ }_{18248}^{188}$	${ }_{710}$	0.0\%	${ }_{0} 0.1 \%$
30	A23. Notht Of the A272	94	4024	${ }^{6939}$	${ }^{3581}$	60	2019	${ }_{1}^{1.0306}$	1.0075	74094	${ }_{4054}$	${ }^{71469}$	3607	2027	${ }^{1.0888}$	1.093	${ }^{80525}$	${ }^{4331}$	${ }^{77673}$	3943		0		0	${ }^{80526}$	4332	${ }^{374}$	${ }^{393}$	0.0\%	0.0\%
${ }^{31}$	B2188, Sayers Common			atc			2022			${ }^{7356}$	${ }^{1497}$	${ }^{7212}$	${ }^{1461}$	2027	${ }^{1.0868}$	1.093	7995	${ }^{1636}$	${ }^{7338}$	1597	0	0	0	0	7995	${ }^{1636}$	${ }^{7838}$	1597	0.0\%	0.0\%
${ }_{3}^{32}$		${ }^{31477}$	${ }^{14189}$		${ }_{273}^{1374}$	30	${ }^{2019} 2019$	${ }_{\substack{1.0306 \\ 1.0306}}^{\text {a }}$	$\xrightarrow{1.0075} 1.0$	- ${ }_{\text {3248 }}^{81016}$	$\underset{\substack{150 \\ 3141}}{\substack{\text { and }}}$	${ }_{\substack{3128 \\ 78147}}$	${ }_{\text {2795 }}^{137}$	${ }_{2027}^{2027}$	${ }_{\substack{1.0068 \\ 1.0888}}^{\text {des }}$	1.093 1.093 1			${ }^{\frac{34400}{8930}}$	${ }_{3055}^{146}$	$\stackrel{0}{10}$	\bigcirc	10	\bigcirc		${ }_{3}^{164}$	${ }_{\substack{3400 \\ 8890}}$	${ }_{\text {146 }}^{1464}$	0.0\%\%	
${ }^{34}$	A22, Westo A A23		${ }^{2421}$	${ }^{62763}$	2154	60	2019	1.0306	1.0075	67059	${ }^{2439}$	64684	2170	${ }^{2027}$	${ }^{1.0888}$	1.093	72880	2666	72028	2372	14	122	214		${ }^{22894}$	2678	${ }^{70312}$	${ }^{2385}$	0.0\%	0.5\%
${ }_{3}$	127, Easoit $A 23$		${ }^{2852}$	68652	2538 288	${ }_{60} 6$	${ }^{2019}$	1.0006 1005	1.10075 1.0075	${ }^{73351}$	${ }^{2873}$	${ }^{70753}$	${ }^{2557}$	${ }_{2027}^{2026}$	${ }^{1.0888}{ }^{10746}$	$\stackrel{1.093}{1075}$	${ }^{79718}$	${ }_{3}^{3141}$	${ }^{76894}$	${ }^{2795}$		41	${ }^{1} 5$	4	${ }^{\frac{79722}{28611}}$	${ }_{3}^{3149}$	${ }^{76899}$	${ }_{2}^{2798}$	0.0\%	$\frac{0.19}{0.00 \%}$
${ }_{37}$	Aes5 Eas of Wick		${ }_{469}$	${ }_{2}^{23880}$	${ }_{4}^{417}$	${ }_{40}^{40}$	${ }_{2019}$	$\stackrel{1}{1.0005}$	$\xrightarrow{1.0075}$	${ }_{25512}^{2025}$	${ }_{473}$	${ }_{20608}^{20008}$	${ }_{420}$	$\stackrel{2026}{2026}$	$\frac{1.076}{1.076}$	$\stackrel{1}{1.075}$	${ }^{27415}$	${ }_{508}$	2644	${ }_{4}^{45}$	${ }_{4}^{4}$	$0{ }_{4}$	${ }^{4} 4$	0	${ }_{2}^{27420}$	${ }_{508}$	26449	${ }_{4} 42$	0.0\%	0.0\%

Year 2 AAWT

	Recepertor Location	${ }^{24}$ Hour				Speed (85L\%\%)	Base var	Growth Rale to 0201		${ }_{2 \text { 2 }}^{\text {2 Hour }}$				Future AssessmentYear	Growth Rate to Future Yea$(2021-2026 / 27)$		${ }^{\text {Future Year of Assessment }}$ 24tour				${ }_{\text {Peak Sovelogmenen Trafic }}^{\text {24tour }}$					$\frac{\text { Futur Vear }+ \text { Develoomment Peak }}{\text { athour }}$						
		Total	hav	Total	hav			Venicles	Hgvs	Total	hav	Total	hav		Toenter	havs	Total	Hgv	Total	hav					hav	Total		Hav	Total	hav	Total	hav
	Fery Foad										${ }^{314}$	1907		2026	${ }^{1.0746}$	1.075		${ }^{338}$		${ }^{334}$						207		344		${ }^{340}$		
2	Church Lane	9859	1106	9644	1072		2017	1.067	1.027	10458	${ }^{1135}$	1029	1101	2026	${ }^{1.0746}$	${ }^{1.075}$	${ }_{11238}$	1221	1093	1183	${ }^{75}$			5	0	${ }_{1131}$		1221	${ }_{11067}$	${ }^{1183}$	0.7%	
3	Ford Rad		${ }^{253}$	${ }_{5669}$		${ }^{25.6}$	2019	${ }^{1.0085}$	1.0075	${ }^{6209}$	${ }^{255}$	6048	${ }^{239}$	${ }^{2026}$	${ }^{1.0746}$	${ }^{1.075}$	${ }^{6672}$	${ }^{274}$	6499	${ }^{257}$	${ }^{67}$	25			25	${ }^{6740}$		299	${ }^{6567}$	${ }^{282}$	1.0\%	24^{6}
4	${ }_{\text {ate }}$ A27 Westo A Aundel	${ }^{23618}$	${ }^{1302}$	${ }^{22781}$	${ }^{1159}$	${ }_{40}$	${ }^{2019}$	$\frac{1.0305}{10095}$	$\frac{1.0075}{10005}$	${ }_{\substack{24338 \\ 2038}}^{\substack{298}}$	${ }_{\substack{1312 \\ 863}}$	${ }_{\substack{23476 \\ 11421}}^{\text {129 }}$	${ }^{1167}$	$\xrightarrow{2026}$2026 2020	${ }^{1.0746}$	${ }_{\text {L }}^{1.075}$	${ }_{2}^{26464}$	${ }_{928}^{1410}$		${ }^{1235}$	${ }_{186}^{51}$	${ }^{34}$		186	${ }^{34}$	${ }^{26294}$		${ }_{935}^{1445}$	${ }_{1249}^{22279}$	${ }_{884}^{1288}$	${ }_{\text {cose }}^{0.5 \%}$	
5		200	${ }_{\text {8 }}^{587}$	${ }^{11083}$	809	30	2019	${ }_{\substack{1.0035 \\ 1.035}}^{\text {a }}$	1.0075	${ }_{\substack{2003 \\ 13652}}^{2}$	${ }_{\substack{863 \\ 565}}$	${ }_{\substack{11421 \\ 1368}}$	$\frac{815}{199}$	$\substack{2026 \\ 2026}$	${ }_{1}^{1.0746}$	${ }_{1}^{1.075}$	${ }_{\text {24605 }}^{\text {14671 }}$	${ }_{597}^{598}$		${ }_{531}^{518}$	${ }_{59} 5$							604		${ }_{538}$	${ }_{0}^{0.4 \%}$	
6		${ }^{1318489}$	${ }_{\substack{592 \\ 692}}$	${ }^{12779}$	${ }_{\text {- }}^{498}$	${ }_{42}^{30}$	${ }^{2019}$	${ }_{\substack{1.0305}}^{1.0085}$	${ }_{\text {l }}^{1.0075} 1$	${ }_{\substack{13652 \\ 1395}}$	${ }_{695}^{568}$	${ }_{13473}^{1368}$	${ }_{656}^{494}$	${ }_{\substack{2026 \\ 2026}}$	${ }_{\substack{1.0746 \\ 1.746}}^{\text {a }}$	${ }^{1.075}$	${ }^{1} 145000$	${ }_{750}$	${ }_{1}^{1478}$	75	${ }_{77}$	${ }^{26}$			2	${ }^{1557}$		${ }_{776}$	${ }^{14556}$	${ }^{508}$	0.48	-
7	A2884 Lyminserer	${ }_{19346}$	69	13075	${ }^{651}$		2019	${ }^{1.0835}$	1.0075		698		${ }_{6} 65$			1.075	15000	750	14478	${ }^{705}$						507		-	1450		0.5\%	3.4\%
$\stackrel{\square}{9}$	A27, Aundel Station	2734	1613	31574	${ }_{1}^{1435}$	40	2019	1.085	1.0075	${ }^{33732}$	1625	${ }^{3253}$	${ }^{1446}$	2026	${ }^{1.0746}$	1.075	36249	${ }_{1747}$	${ }^{39985}$	${ }_{154}$	${ }_{68}$	45			45	${ }^{3631}$		${ }_{1792}^{17}$	${ }^{3003}$	${ }^{1599}$	0.2\%	2.6%
																					0	0			0	0		0	0	0	movo!	
11	A27, Sout o O Coiosbush	986	${ }^{1757}$	30805	${ }^{1563}$	60	2019	1.0305	1.0075	32910	${ }^{1770}$	${ }^{31774}$	${ }^{1575}$	2026	${ }^{1.0746}$	${ }_{1}^{1.075}$	35365	1903	34112	${ }^{1693}$	${ }^{135}$	61	5	135	61	${ }^{350}$		1964	34248	${ }^{1754}$	0.4\%	3.2\%
${ }^{12}$	A27 H High Savivion	2776	${ }_{923}$	21989	821	30	2019	1.0306	1.0075	${ }^{23473}$	${ }_{930}$	${ }^{2284}$		2026	${ }^{1.0788}$	1.075	${ }^{2532}$		24426	890	7	49			49	${ }^{2540}$		1049		${ }^{939}$	0.3\%	
13	A24AR27 Otifigion (Waren Foad)	3077	1012	${ }^{29887}$	900	40	2019	1.0036	1.0075	31719	1020	30595	${ }^{907}$	2026	${ }^{1.0788}$	1.075	${ }_{34218}$	1098	33006	975	${ }^{76}$	64			64	${ }^{3429}$		1160	33082	1040	0.2%	
${ }_{14}^{14}$	${ }^{\text {A24 F Findon }}$	25731	${ }^{627}$	${ }^{24820}$	${ }_{558}$	${ }_{40}$	${ }_{2018}^{2029}$	1.0454	1.016	${ }_{\text {26899 }}^{\substack{\text { 2650 }}}$		-	${ }_{567}$	${ }_{\text {2026 }}^{2026}$	${ }^{1.07888}$	${ }_{1}^{1.075}$	${ }_{2}^{2019}$	${ }^{685}$	${ }^{27999}$	${ }^{609}$	71				${ }_{29}^{15}$	${ }^{2099}$		${ }^{7} 700$	${ }_{\text {2002 }}^{2038}$	${ }^{624}$	${ }^{0.2 \%}$	年.2\%
	A280						${ }_{202}^{2019}$	${ }_{1}^{1.0306}$	1.0075				${ }_{7}{ }_{729}$	${ }_{2020}^{2026}$						${ }^{\text {7480 }}$					12	${ }^{2450}$		${ }_{824}$				
${ }_{17}^{16}$	${ }^{\text {A2833 }}$ Wessestor 124	析	${ }_{5}$	${ }_{\text {Tc }}^{\text {T13/4 }}$	127	4				${ }_{\substack{22649 \\ 11430}}$	${ }_{2356}$	${ }_{\substack{20288 \\ 11295}}^{\text {cen }}$	${ }_{2}{ }^{3292}$	${ }_{2027}^{2020}$	${ }_{\text {I }}^{1.00688}$	$\stackrel{1}{1.093}$	${ }^{12422}$	${ }^{2543}$	${ }^{12275}$	${ }^{2056}$	14	,				${ }^{12566}$		${ }^{2551}$	${ }^{1247}$	${ }^{2514}$	${ }_{\text {1.1\% }}$	${ }_{\text {L }}^{\text {L.3\% }}$
19	B2135, South of Asurust	3444	105	3399	104	${ }^{48}$	${ }^{2019}$	1.0306	1.0075	3350	${ }^{106}$	3502	105	2027	${ }^{1.0868}$	1.093	3858	116	3807	115					5	${ }^{3862}$		120	${ }^{3811}$	${ }^{119}$		
20	A283, Sterring		565	20230	570	52	2019	1.0306	1.0075	21112	599	2089	574	2026	${ }^{1.0788}$	1.075	${ }^{22776}$	${ }^{633}$		7								633		617	0.2\%	0\%
${ }^{21}$	A24, South of A272		1836	${ }^{3391}$	${ }^{1481}$	40	2019	1.0006	1.0075	${ }^{36567}$	1648		${ }^{1993}$	2026	${ }^{1.0788}$	1.075	39448		3792	104	78					${ }^{3952}$			37870		0.2%	\%
${ }^{22}$	B2116 Patirige Grieen Foad	${ }^{6374}$	${ }^{362}$	6264	${ }^{353}$	29	2019	1.0306	1.0075	${ }^{6659}$	${ }_{364}$	6455	355	2027	${ }^{1.0868}$	1.093	7140	398	7015	388	23	6			6	7163		${ }^{05}$	7039	395	0.3\%	
${ }^{23}$	A281, South Shemantury	${ }^{7} 739$	${ }^{341}$	${ }^{7652}$	${ }^{334}$	40	2018	1.045	1.016	8090	${ }^{346}$	7999	340	${ }^{2027}$	${ }^{1.0868}$	1.093	${ }_{8792}$	${ }^{378}$	8693	${ }^{371}$	${ }^{23}$					${ }_{8815}$		384	8776	${ }^{377}$	0.3\%	
${ }^{24}$	A281, South of Cowiold	6081	141	5866	${ }^{125}$	30	2019	1.0036	1.0075	${ }^{6267}$	142	6045	126	2027	${ }^{1.0868}$	1.093	6811	155	6590	138	4	4			4	6815		159	${ }^{6573}$	${ }^{142}$	${ }^{0.1 \%}$, 3.3%
${ }^{25}$	A881, Comolod Cenerer		${ }^{991}$	${ }_{21596}$	${ }^{882}$	30	2019	${ }^{1.0806}$	${ }_{1}^{1.0075}$	${ }^{23074}$	${ }_{\text {¢988 }}^{981}$	${ }_{2}^{22957}$	${ }^{888}$	${ }^{2027}$	${ }^{1.08888}$	${ }^{1.093}$	${ }^{25077}$	1091	24189	${ }^{971}$	${ }^{72}$	12			${ }^{12}$	2514		${ }_{\text {103 }}^{1103}$	${ }^{242836}$	${ }_{\text {983 }}$	${ }^{0.3 \%}$	(1.15\%
${ }_{26}^{26}$		16004	${ }^{745}$		${ }^{663}$	30 60	${ }_{2019}^{2019}$	${ }_{1}^{1.03006}$	${ }^{\frac{1}{1.0075}} 1$	${ }_{\text {l }}^{17829}$	${ }^{751}$	$\frac{1684}{888}$	668 14	${ }_{2022}^{2022}$	${ }_{\substack{1.0 .0688}}^{1.0788}$	$\stackrel{\stackrel{1}{1.093}}{1.075}$	${ }_{\substack{18938 \\ 948}}^{1}$	${ }^{820}$	${ }_{9}^{1823}$	${ }_{\text {l }}^{150}$	${ }^{69}$	12			12	${ }_{\text {a }}^{1900}$		${ }_{18} 8$	${ }^{18332}$ 918	${ }_{142}^{16}$	${ }_{\text {cone }}^{0.4 \%}$	
${ }_{20}^{27}$			${ }_{7}^{164}$							${ }_{17406}^{174}$			${ }_{649}$					${ }^{797}$	${ }_{18247}^{181}$	${ }_{709}$	${ }_{109}$							${ }_{832}$	1235	${ }^{7} 45$	${ }_{0}^{0.4 \%}$	${ }^{5.4 \%}$
${ }_{30}^{29}$	A2, Westo 1 A 23	${ }^{16889}$	${ }_{4}^{724} 4$	${ }_{6}^{16939}$	${ }_{6}^{648} 3$	40 60	2019 2019	${ }_{\substack{1.0036 \\ 1.0036}}^{\text {a }}$	${ }_{1}^{1.00075}$		${ }_{4054}^{409}$		${ }_{\substack{699 \\ 3097}}^{6}$	${ }_{2027}^{2027}$	${ }_{\substack{1.0868 \\ 1.0888}}^{\text {He }}$	${ }_{\text {L }}^{1.0093}$	${ }_{\substack{18917 \\ 80525}}^{19}$	${ }_{4931}$	${ }_{77673}$	${ }_{393}$	40	${ }_{16}$			${ }^{16}$	${ }^{3026}$		${ }_{4}^{442}$	${ }^{187713}$	${ }_{3959}$	${ }_{\text {a }}^{0.0 \%}$	
31	B2188, Sayels Sommon						2022			${ }^{7356}$	1497	${ }_{7212}$	${ }^{1461}$	2027	${ }_{1}^{1.0868}$	1.093	7995		${ }^{7838}$	1597	0	0			0	${ }^{7995}$		1636	7838	${ }^{1597}$	0.0\%	
32	B2116, Hentifld foad, Aloume	${ }^{3147}$	149	3036	${ }^{133}$	30	2019	1.0006	1.0075	${ }^{324}$	${ }^{150}$	${ }^{1228}$	${ }^{134}$	2027	${ }^{1.0888}$	1.093	${ }_{3525}$	164	3400	146	0				0	${ }^{3525}$		164	3400	${ }^{146}$	0.0\%	${ }^{0.0 \%}$
${ }^{33}$	A23, Northo ot the A272	78611	${ }^{3118}$	${ }_{75826}$	274	60	2019	1.0006	1.0075	${ }^{81016}$	${ }^{3141}$	${ }^{78147}$	2795	2027	${ }^{1.0868}$	1.093	${ }^{88049}$	3434	89930	3055	90	5			56	${ }^{8813}$		3489	8020	311	0.1%	1.6%
${ }_{34}^{34}$	A22, Westot Alaz3		${ }^{24221}$	${ }^{622763}$	${ }_{2}^{2154}$	${ }_{60} 6$	${ }^{2019}$	${ }^{1.0036}$	1.0075	${ }^{67059}$	${ }^{24399}$	${ }_{\substack{64684 \\ 70753 \\ 7}}$	${ }_{\substack{2170 \\ 2557}}$	${ }_{2027}^{2027}$	${ }^{1} .0 .0888$	1.093 1.093	(72880	${ }_{314}^{2666}$	${ }_{7}^{72088}$	${ }^{2372}$	${ }_{48}^{95}$	${ }^{62}$			2	${ }^{72977}$		${ }^{2728}$	${ }^{70393}$	${ }^{2384}$		
${ }_{35}$	A27, Eas of of A23	${ }^{173}$		68652		${ }^{60}$	${ }_{2019}^{2019}$		1.0075		${ }^{2853}$	${ }^{70753}$			${ }^{1.08888}$			${ }^{3141}$		${ }_{\text {2 }}^{2795}$						${ }^{7976}$					${ }_{0}^{0.1 \%}$	
${ }_{37}$			¢	${ }_{2}^{24280} 2$	${ }_{4}^{488}$	40	$\xrightarrow{2019}$	$\xrightarrow{1.0035}$	$\stackrel{1}{1.0075}$	${ }_{2}^{26523}$	${ }_{473}$	${ }_{\text {26080 }}^{24608}$	420	${ }_{2020}^{2026}$	$\frac{1}{1.0746}$	${ }_{1}^{1025}$	${ }_{2}^{27415}$	${ }_{508}^{508}$	22044	${ }_{4}^{452}$	49	0				2746		${ }_{508}$	26493	452	0.2\%	${ }^{0.0 \%}$

Year 3 AAWT

	Receperor Location	${ }^{24}$ Hour		Tratic				Rate to						${ }_{\text {Future }}^{\substack{\text { Assessment } \\ \text { Year }}}$							${ }_{\text {Paen }}^{\text {Peover }}$			${ }^{\text {n }}$ Heratt		$\frac{\text { Future Year + Developoment Peak }}{24 \text { Hour }}$					
		Total	Hav	Total	Hav	Speed (85in\%)	Ease Year	Venicles	Havs	Total	hav	Total	hav		TVenicles	Havs	Total	Hav	Total	hav			LV To		hav	Total	hav	Total	hav	Total	Hav
	Ferry Foad	2022 ATC					${ }^{2022}$			${ }^{1025}$	${ }^{314}$	1907	${ }^{310}$	${ }_{2026}$	${ }^{1.0746}$	1.075	${ }^{2069}$	${ }^{338}$	2049	${ }^{334}$	0	0	0	0	0	${ }^{2069}$	${ }^{338}$	2049	${ }^{334}$	0.0\%	${ }^{0.1 \%^{0} \%}$
2		9859	1106	9644	1072	41.9	${ }^{2017}$	${ }_{1}^{1.0007}$	${ }_{1}^{1.027}$	${ }^{10458}$	${ }_{1}^{1135}$	${ }^{10229}$	1101	${ }_{2026}^{2026}$	${ }^{1.0746}$	1.075	${ }_{1}^{12388}$	${ }^{1221}$	10993	${ }^{1183}$		\bigcirc		1	\bigcirc	${ }_{1239}^{1239}$	${ }^{1221}$	${ }^{10994}$	${ }^{1183}$	0.0\%	
3	Ford		$\stackrel{233}{232}$	${ }_{\text {cher }}^{5899}$			${ }_{2019}^{2019}$	${ }^{1.0035}$	1.0075	${ }^{62099}$	${ }_{\substack{235 \\ 1312}}$	-6048	$\stackrel{239}{1167}$	$\underset{\substack{2026 \\ 2026}}{ }$	${ }^{1.0746}$	${ }_{1}^{1.075}$	${ }_{\substack{6672 \\ 26154}}^{21}$	${ }_{184}^{274}$	${ }_{25298}^{6498}$	${ }^{257}$	${ }^{24}$	${ }_{2}$	$1{ }^{1}$	${ }^{24}$	${ }^{6}$	${ }^{6679}$	${ }_{1}^{283}$	${ }^{\text {6055 }}$	262	$\frac{0.196}{0.1 \%}$	
${ }^{4}$			(1302	${ }_{\text {22789 }}^{11088}$	${ }^{11599}$	${ }_{40}^{40}$	${ }_{2019}^{2019}$		- 1.0075	${ }_{\substack{243388 \\ 23085}}^{24}$	(1312	${ }_{\substack{23476 \\ 11421}}^{\text {P1 }}$	${ }^{1167}$	$\underset{\substack{2026 \\ 2026}}{ }$	${ }_{\text {1 }}^{1.0746}$	${ }_{\text {1.075 }}^{1.075}$	${ }_{20}^{26854}$	${ }_{9}^{1410}$	${ }_{\text {25228 }}^{2227}$	${ }_{\text {l }}^{1255}$	${ }_{4}^{24}$	${ }^{22}$	${ }_{4}^{1}$	24	${ }_{0}^{22}$	${ }_{20}^{28878}$	${ }_{9}^{1432}$	${ }_{\text {25251 }}^{\text {2277 }}$	${ }_{8}^{1278}$	0.1.0\%	$\frac{1.6 \%}{0.0 \%}$
6	A283 North of Wick	${ }_{1} 13248$	551	${ }^{12779}$	${ }_{490}$	30	$\stackrel{2019}{ }$	${ }_{1}^{1.0005}$	${ }_{1}^{1.0075}$	${ }^{136652}$	${ }_{555}$	${ }^{13168}$	${ }_{4} 94$	${ }_{2026}$	${ }^{1.0746}$	1.075	${ }_{1} 14671$	${ }_{597}$	14151	${ }^{531}$	14	0	13	14	-	${ }_{1} 16884$	${ }_{5}^{597}$	${ }^{14165}$	${ }_{531}$	0.1\%	$\stackrel{0.0 \%}{ }$
7	A284 LIMminser	546	692	13075	651	42	2019	1.0305	1.0075	13959	698	13473	${ }_{656}$	2026	1.0746	1.075	15000	${ }_{750}$	${ }_{14478}$	705	14	0	13	14	0	15014	${ }^{750}$	14492	705	0.1\%	0.0\%
$\stackrel{\square}{9}$	A27, Arundel Staiton	${ }^{32734}$	${ }^{1613}$	31574	${ }^{1435}$	40	2019	${ }^{1.0035}$	${ }^{1.0075}$	${ }^{33732}$	1625	${ }^{32538}$	${ }^{1446}$	${ }^{2026}$	10746	. 075	6249	1747	3995	$\stackrel{0}{154}$	26	${ }^{0}$	${ }_{2}{ }^{\circ}$	${ }^{0}$	${ }^{0}$	$\stackrel{0}{3625}$	$\stackrel{0}{1772}$	${ }_{34991}^{30}$	$\stackrel{\square}{1579}$	molvo	
																					0	2	0	-	,	0	0	0	0	folvo!	
${ }^{11}$	A27, South of Cososbush	${ }^{31996}$	${ }^{1757}$	${ }^{30805}$	${ }^{1563}$	${ }^{60}$	2019	${ }^{1.0035}$	${ }^{1.0075}$	${ }^{32910}$	${ }^{1770}$	${ }^{31774}$	${ }^{1575}$	${ }^{2026}$	${ }^{1.0746}$	1.075	${ }^{35365}$	${ }^{1903}$	${ }^{34112}$	1693	40	${ }^{25}$	15	40	25	${ }^{35005}$		${ }^{34152}$		$0.1{ }^{0}$	${ }^{1.33^{6} /{ }^{2} /}$
${ }_{13}^{12}$		${ }^{22776}$	(1023	${ }_{229687}^{21969}$	-	${ }_{40}^{30}$	${ }_{2019}^{2019}$	${ }_{\text {1, }}^{1.0306}$	${ }_{\text {1.0075 }}^{1.0075}$	$\underbrace{\substack{\text { 31719 }}}_{\text {23473 }}$	1020	${ }_{\substack{22641 \\ 30595}}^{\text {chen }}$	907	2026 2026	${ }_{\substack{1.0788 \\ 1.0788}}$	${ }_{1}^{1.075}$	34218	1096	${ }_{33006}^{2426}$	${ }^{890}{ }^{995}$	${ }_{30}^{5}$	${ }_{30}^{4}$	${ }^{\circ}$	${ }_{30}$	${ }_{30}^{4}$	${ }^{34248}$	${ }^{1126}$	${ }_{3}^{24330}$	${ }^{899} 1005$	0.0\%\%	
14	A24 Findon					40	2018	1.0454	1.016	26899	${ }_{637}$	${ }^{25946}$	${ }^{567}$	2026	${ }^{1.0788}$	1.075	2019	${ }^{685}$	27991	609	5	25	305	56	25	2074	710	28047	${ }^{635}$	0.2%	${ }^{\text {L.7.7\% }}$
${ }^{15}$	A280 Long Furiong									${ }_{\substack{18550 \\ \hline 2089}}$	${ }_{\substack{3653}}$	+17883	${ }^{3779}$	${ }_{2026}^{2026}$	${ }_{\text {1.0788 }}^{1.0}$	1.075	${ }_{2}^{20044}$	${ }^{3927}$		${ }^{3740}$	${ }^{37}$	2	${ }^{15}$	37	2	${ }^{20081}$	${ }^{3949}$	${ }^{19329}$	${ }^{3762}$	${ }^{0.2 .2 \%}$	0.6\%
${ }_{17}^{16}$		${ }^{750}{ }^{2022}$ ATC 21374				41	${ }_{2019}^{2022}$	1.0306	${ }^{1.0075}$	${ }_{\text {22649 }}^{11430}$	${ }_{2356}{ }_{236}$	$\underset{\substack{2028 \\ 11295}}{\substack{\text { a }}}$	${ }^{132}$	${ }_{2020}^{2027}$	${ }_{\substack{1.0 .0888}}^{1.088}$	$\stackrel{1.075}{1.093}$	${ }^{\frac{2434}{12422}}$	${ }_{2543}^{\frac{812}{}}$	${ }_{\text {23764 }}^{12275}$	${ }_{206}$	${ }^{29}$	35	${ }_{74}^{29} 10$	109	${ }^{35}$	${ }_{\text {2463 }}^{24231}$	${ }_{2518}^{858}$	${ }_{1}^{23892}$	${ }_{2541}{ }^{188}$	0.9\%	${ }^{4 \%}$
19	B2135, Sout of Ashust	3444		3399	104	${ }^{48}$	2019	1.0306	1.075	3550	${ }^{106}$	3502	105	2027	${ }^{1.00888}$	1.093	${ }_{3588}$	116	3807	${ }^{115}$	-	4	0		4	${ }^{3862}$	120	${ }^{3811}$	119	0.1\%	
${ }^{20}$	A283, Sterying		585	20330	${ }_{570}$	52	2019	${ }^{1.0306}$	1.075	21112	599	${ }^{20849}$	574	2026	${ }^{1.0788}$	1.075	${ }^{22776}$	633	2299	${ }_{6}^{617}$	22	0	22	2	0	${ }^{22798}$	${ }^{633}$	${ }^{22513}$	617	0.1\%	0.0\%
${ }^{21}$	A24, South of A 2 272		${ }^{1636}$	${ }^{33991}$	${ }^{1481}$	40	2019	1.0306	1.0075	36567	1648	${ }^{35032}$	${ }^{1993}$	2026	${ }^{1.0788}$	1.075	${ }^{39488}$	1772	37792	1804	62		51	2	11	39510	${ }^{1783}$	${ }^{37854}$	1615	0.2\%	0.6\%
22	B2116 Patricge Grieen Poad	74	${ }^{362}$	6264	${ }^{353}$	29	2019	1.0306	1.075	6569	${ }^{364}$	6455	${ }^{355}$	2027	${ }^{1.0868}$	1.093	7140	398	715	${ }^{388}$	14	6	${ }^{8}$	14	6	7154	404	7030	${ }^{394}$	0.2%	
${ }_{24}^{23}$	A281, South Shemanaur	${ }^{7} 739$	${ }^{341}$	${ }_{\substack{7655 \\ 5685}}$	${ }^{334}$	${ }_{40}^{40}$	${ }_{2018}^{2018}$	${ }_{1}^{1.0454}$	${ }^{1.010}$	${ }_{8090}^{8008}$	${ }^{346}$	${ }_{\text {7999 }} 7$	${ }^{340}$	${ }_{2027}^{2027}$	${ }_{\text {1, }}^{1.08888}$	1.093	${ }^{8792}$	${ }^{378}$	${ }_{8989}^{898}$	${ }^{377}$	14	5	8	${ }^{14}$	5	${ }_{8806}^{888}$	${ }^{384}$	${ }^{807}$	${ }^{376}$	${ }^{0.22^{2} \%}$	
${ }_{25}^{24}$	${ }^{\text {A282, }}$ South of owold	${ }^{6081}$	${ }^{191}$	${ }^{5866}$	${ }^{125}$	${ }_{30}^{30}$	${ }^{2019}$		${ }^{1.0075}$	${ }_{\substack{6267 \\ 2029}}^{629}$	${ }_{\substack{142 \\ 098}}$	${ }^{6045}$	${ }^{126}$	${ }^{2027}$	${ }^{1.0088}$	$\xrightarrow{1.093}$	${ }^{6831}$	${ }_{1}^{155} 1$	${ }^{65140}$	${ }^{138}$							${ }_{1}^{159}$	${ }_{24738}$	${ }^{141}$	${ }^{0.0 \%}$	$\frac{2.1 \%}{1.0}$
${ }^{25}$		${ }^{28989}$	${ }_{7}{ }_{795}^{991}$	$\stackrel{\text { 21596 }}{1685}$	$\frac{868}{663}$	${ }_{30}$	${ }_{2019}$	${ }_{\text {1.0006 }}^{1.006}$	${ }_{\text {l }}^{1.0075}$	${ }_{-1}^{172421}$	${ }_{751}$		${ }_{668}^{688}$	${ }_{2027}^{2027}$	${ }^{\text {1.0.0088 }}$	${ }_{1}^{1.093}$	${ }_{1}^{18933}$	${ }_{820}$	${ }_{18283}$	${ }_{730}$	${ }_{89}$	11	788	${ }_{89}$		${ }^{2} 10022$	${ }^{831}$	${ }^{18352}$	${ }_{741}$	${ }_{0}^{0.5 \%}$	1.38\%
${ }_{20}^{27}$	Winenam Lane, Southo 1 A A272		${ }^{16}$	${ }_{\text {823 }}^{1823}$	${ }^{14}$	${ }^{60}$	${ }_{2019}^{2019}$	${ }_{1}^{1.0036}$	${ }^{1.0075}$	${ }_{8}^{879}$	${ }^{16}$	- 848	${ }^{14}$	${ }_{2026}^{2027}$	${ }_{\text {1.0788 }}{ }_{\text {1,088 }}$	${ }_{1}^{1.075}$	${ }^{9988}$	${ }^{17}$	${ }^{915}$	15	${ }^{15}$	5	10	15	5	${ }^{964}$	${ }^{23}$	${ }^{930}$	${ }^{21}$	${ }^{1.6 \%}$	
${ }_{30}^{29}$			${ }_{4}^{124} 4$	${ }_{\text {ckeren }}^{1689}$	${ }_{\substack{648 \\ 3581}}^{6}$	${ }_{60}^{40}$	${ }_{2019}^{2019}$	1.0036 1.0068	${ }_{1}^{1.0075} 1$		${ }_{4}^{729}$	${ }_{\substack{167799 \\ 71469}}$	¢ 649	${ }_{2027}^{2027}$	${ }_{\substack{1.0088 \\ 1.0888}}^{10.0}$	${ }_{1}^{1.093} 1$	${ }_{\substack{18997 \\ 80525}}^{18}$	${ }_{4}^{7431}$	${ }_{7}^{18247}$	${ }^{709}{ }^{\text {393 }}$	${ }_{45}^{129}$	14	100 12	${ }_{45}^{129}$	${ }_{14}^{29}$	${ }^{10046} 8$	${ }_{4445}^{826}$	${ }^{187716}$	${ }_{\text {3 }}^{\text {739 }}$	${ }^{0.7 \% \%}$	
31	B2188, Sayelis common						2022			${ }^{7356}$	1497	7212	${ }_{1}^{1461}$	2027	${ }^{1.0088}$	1.093	7995	1636	${ }^{7838}$	${ }_{1597}$	0	-	0	0	0	${ }^{7995}$	1636	${ }^{7838}$	${ }^{1597}$	0.0\%	0.0\%
${ }^{32}$	82116, Hentield foad, Albuume	${ }^{3147}$	${ }^{149}$	${ }^{3036}$	${ }^{133}$	30	${ }^{2019}$	${ }_{1}^{1.0096}$	1.0075	${ }^{3243}$	${ }^{150}$	${ }^{31288}$	${ }^{134}$	${ }^{2027}$	${ }^{1.0868}$	1.093	${ }^{3525}$	164	${ }^{3400}$	${ }^{146}$	0	0	0	0	0	${ }^{3525}$	${ }^{164}$	${ }^{3400}$	${ }^{146}$	0.0\%	0.0\%
${ }^{33}$	A23, Northof it he A272	${ }^{78611}$	${ }_{3118}$	${ }^{75826}$	${ }^{2774}$	${ }^{60}$	${ }^{2019}$	${ }_{1}^{1.0036}$	${ }^{1.0075}$	${ }_{81016}^{80}$	3141	${ }^{78147}$	${ }^{2795}$	${ }^{2027}$	${ }^{1.00888}$	1.093	${ }^{88049}$	${ }^{34344}$	84930	${ }^{3055}$	${ }^{7}$	32	39	71	32	${ }^{88119}$	${ }^{3665}$	85000	3087	0.1\%	0.9\%\%
${ }_{35}^{34}$		\% 68	${ }_{2852}^{2421}$	¢ ${ }_{\text {62763 }}^{688}$	${ }_{2}^{2154} \times$	${ }_{60}^{60}$	${ }_{2019}^{2019}$	1.0036 1.0086 10	$\stackrel{1}{1.0075}$	${ }^{\text {673059 }}$ 73951	${ }_{2837}^{2489}$	64684 70758	${ }^{21750}$	${ }_{2027}^{2027}$	${ }_{\substack{1.0868 \\ 1.0888}}^{108}$	$\stackrel{1.093}{1.093}$	${ }_{\substack{12880 \\ 79718}}$		${ }^{7} 782888$	${ }^{2772}$	${ }_{36}^{55}$		${ }^{25} 5$	${ }_{36}$	${ }^{30} 19$	${ }^{129955}$	${ }_{3160}^{2696}$	${ }_{7}^{70353}$	${ }^{2814}$	0.0\%	-
${ }_{36}^{36}$	${ }^{\text {A2S59. West ot Church Street }}$		${ }^{548}$	${ }_{\substack{24930 \\ 2380}}$	${ }_{488}^{488}$	40	${ }^{2019}{ }^{2019}$	(1.0305	${ }^{1.00075}$	${ }_{\substack{26623 \\ 26512}}$	${ }_{\substack{552 \\ 473}}^{\text {4, }}$	${ }_{\substack{25880 \\ 24688}}$	${ }_{4}^{492}$	${ }_{\text {2026 }}^{2026}$	${ }_{\text {1.0.076 }}^{1.076}$	${ }_{\text {1.075 }}^{1.075}$	${ }^{28809}$27415 28	${ }_{\text {cos }}^{598}$	$\xrightarrow{25596}$	${ }_{5}^{528}$	$\stackrel{2}{7}$	\bigcirc	2	2	\bigcirc	${ }^{28612}$	${ }_{5}^{598}$	${ }^{229598}$	${ }_{4}^{528}$	${ }^{0.0 \%}$	
	A259 Easio flick												420	${ }^{2026}$																0.0\%	0.0\%

Year 4 AAWT

Annex B Figures

Page intentionally blank

Page intentionally blank

Page intentionally blank

[^0]: ${ }^{1} 70 \mathrm{mph}$ for cars and motorcycles, 60 mph for all other vehicles

[^1]: ${ }^{2}$ HDD is a continuous activity and cannot be paused once started.

